import numpy as np import torch import torch.nn.functional as F from torchvision.transforms.functional import normalize import gradio as gr from briarmbg import BriaRMBG import PIL from PIL import Image import tempfile import os import time import uuid import shutil # Load the pre-trained model print("Loading model...") net = BriaRMBG.from_pretrained("briaai/RMBG-1.4") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") net.to(device) net.eval() print(f"Model loaded on {device}") # Create output directory if it doesn't exist OUTPUT_DIR = "output_images" os.makedirs(OUTPUT_DIR, exist_ok=True) def process(image, progress=gr.Progress()): if image is None: return None, None, None try: progress(0, desc="Starting processing...") orig_image = Image.fromarray(image) original_size = orig_image.size progress(0.2, desc="Preparing image...") process_image = orig_image.resize(original_size, Image.LANCZOS) w, h = process_image.size im_np = np.array(process_image) im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2, 0, 1) im_tensor = torch.unsqueeze(im_tensor, 0) im_tensor = torch.divide(im_tensor, 255.0) im_tensor = normalize(im_tensor, [0.5, 0.5, 0.5], [1.0, 1.0, 1.0]) progress(0.4, desc="Processing with AI model...") if torch.cuda.is_available(): im_tensor = im_tensor.cuda() with torch.no_grad(): result = net(im_tensor) progress(0.6, desc="Post-processing...") result = torch.squeeze(F.interpolate(result[0][0], size=(h, w), mode='bilinear'), 0) ma = torch.max(result) mi = torch.min(result) result = (result - mi) / (ma - mi) result_array = (result * 255).cpu().data.numpy().astype(np.uint8) pil_mask = Image.fromarray(np.squeeze(result_array)) if pil_mask.size != original_size: pil_mask = pil_mask.resize(original_size, Image.LANCZOS) new_im = orig_image.copy() new_im.putalpha(pil_mask) progress(0.8, desc="Saving result...") unique_id = str(uuid.uuid4())[:8] filename = f"background_removed_{unique_id}.png" filepath = os.path.join(OUTPUT_DIR, filename) new_im.save(filepath, format='PNG', quality=100) # Convert to numpy array for display output_array = np.array(new_im.convert('RGBA')) progress(1.0, desc="Done!") return ( output_array, gr.update(value=filepath, visible=True), gr.update(value=f""" """) ) except Exception as e: print(f"Error processing image: {str(e)}") return None, None, None css = """ @import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;500;700&display=swap'); .title-text { color: #ff00de; font-family: 'Orbitron', sans-serif; font-size: 2.5em; text-align: center; margin: 20px 0; text-shadow: 0 0 10px rgba(255, 0, 222, 0.7); animation: glow 2s ease-in-out infinite alternate; } .subtitle-text { color: #00ffff; text-align: center; margin-bottom: 30px; font-size: 1.2em; text-shadow: 0 0 8px rgba(0, 255, 255, 0.7); } .image-container { background: rgba(10, 10, 30, 0.3); border-radius: 15px; padding: 20px; margin: 10px 0; border: 2px solid #00ffff; box-shadow: 0 0 15px rgba(0, 255, 255, 0.2); transition: all 0.3s ease; } .image-container img { max-width: 100%; height: auto; display: block; margin: 0 auto; } .image-container:hover { box-shadow: 0 0 20px rgba(0, 255, 255, 0.4); transform: translateY(-2px); } .download-btn { background: linear-gradient(45deg, #00ffff, #ff00de); border: none; padding: 12px 25px; border-radius: 8px; color: white; font-family: 'Orbitron', sans-serif; cursor: pointer; transition: all 0.3s ease; margin-top: 10px; text-align: center; text-transform: uppercase; letter-spacing: 1px; width: 100%; display: block; } .download-btn:hover { transform: translateY(-2px); box-shadow: 0 5px 15px rgba(0, 255, 255, 0.4); } @keyframes glow { from { text-shadow: 0 0 5px #ff00de, 0 0 10px #ff00de; } to { text-shadow: 0 0 10px #ff00de, 0 0 20px #ff00de; } } @media (max-width: 768px) { .title-text { font-size: 1.8em; } .subtitle-text { font-size: 1em; } .image-container { padding: 10px; } .download-btn { padding: 10px 20px; } } """ with gr.Blocks(css=css) as demo: gr.Markdown("""
Remove backgrounds instantly using advanced AI technology
""") with gr.Row(): with gr.Column(): input_image = gr.Image( label="Upload Image", type="numpy", elem_classes="image-container" ) output_image = gr.Image( label="Result", type="numpy", show_label=True, elem_classes="image-container" ) download_button = gr.File( label="Download Processed Image", visible=True, elem_classes="download-btn" ) auto_download = gr.HTML(visible=False) input_image.change( fn=process, inputs=input_image, outputs=[output_image, download_button, auto_download] ) if __name__ == "__main__": demo.launch()