Spaces:
Sleeping
Sleeping
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| from torchvision.transforms.functional import normalize | |
| import gradio as gr | |
| from briarmbg import BriaRMBG | |
| import PIL | |
| from PIL import Image | |
| import tempfile | |
| import os | |
| import time | |
| import uuid | |
| import shutil | |
| # Load the pre-trained model | |
| print("Loading model...") | |
| net = BriaRMBG.from_pretrained("briaai/RMBG-1.4") | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| net.to(device) | |
| net.eval() | |
| print(f"Model loaded on {device}") | |
| # Create output directory if it doesn't exist | |
| OUTPUT_DIR = "output_images" | |
| os.makedirs(OUTPUT_DIR, exist_ok=True) | |
| def process(image, progress=gr.Progress()): | |
| if image is None: | |
| return None, None, None | |
| try: | |
| progress(0, desc="Starting processing...") | |
| orig_image = Image.fromarray(image) | |
| original_size = orig_image.size | |
| progress(0.2, desc="Preparing image...") | |
| process_image = orig_image.resize(original_size, Image.LANCZOS) | |
| w, h = process_image.size | |
| im_np = np.array(process_image) | |
| im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2, 0, 1) | |
| im_tensor = torch.unsqueeze(im_tensor, 0) | |
| im_tensor = torch.divide(im_tensor, 255.0) | |
| im_tensor = normalize(im_tensor, [0.5, 0.5, 0.5], [1.0, 1.0, 1.0]) | |
| progress(0.4, desc="Processing with AI model...") | |
| if torch.cuda.is_available(): | |
| im_tensor = im_tensor.cuda() | |
| with torch.no_grad(): | |
| result = net(im_tensor) | |
| progress(0.6, desc="Post-processing...") | |
| result = torch.squeeze(F.interpolate(result[0][0], size=(h, w), mode='bilinear'), 0) | |
| ma = torch.max(result) | |
| mi = torch.min(result) | |
| result = (result - mi) / (ma - mi) | |
| result_array = (result * 255).cpu().data.numpy().astype(np.uint8) | |
| pil_mask = Image.fromarray(np.squeeze(result_array)) | |
| if pil_mask.size != original_size: | |
| pil_mask = pil_mask.resize(original_size, Image.LANCZOS) | |
| new_im = orig_image.copy() | |
| new_im.putalpha(pil_mask) | |
| progress(0.8, desc="Saving result...") | |
| unique_id = str(uuid.uuid4())[:8] | |
| filename = f"background_removed_{unique_id}.png" | |
| filepath = os.path.join(OUTPUT_DIR, filename) | |
| new_im.save(filepath, format='PNG', quality=100) | |
| # Convert to numpy array for display | |
| output_array = np.array(new_im.convert('RGBA')) | |
| progress(1.0, desc="Done!") | |
| return ( | |
| output_array, | |
| gr.update(value=filepath, visible=True), | |
| gr.update(value=f""" | |
| <script> | |
| setTimeout(function() {{ | |
| window.location.href = '/file={filepath}'; | |
| }}, 1000); | |
| </script> | |
| """) | |
| ) | |
| except Exception as e: | |
| print(f"Error processing image: {str(e)}") | |
| return None, None, None | |
| css = """ | |
| @import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;500;700&display=swap'); | |
| .title-text { | |
| color: #ff00de; | |
| font-family: 'Orbitron', sans-serif; | |
| font-size: 2.5em; | |
| text-align: center; | |
| margin: 20px 0; | |
| text-shadow: 0 0 10px rgba(255, 0, 222, 0.7); | |
| animation: glow 2s ease-in-out infinite alternate; | |
| } | |
| .subtitle-text { | |
| color: #00ffff; | |
| text-align: center; | |
| margin-bottom: 30px; | |
| font-size: 1.2em; | |
| text-shadow: 0 0 8px rgba(0, 255, 255, 0.7); | |
| } | |
| .image-container { | |
| background: rgba(10, 10, 30, 0.3); | |
| border-radius: 15px; | |
| padding: 20px; | |
| margin: 10px 0; | |
| border: 2px solid #00ffff; | |
| box-shadow: 0 0 15px rgba(0, 255, 255, 0.2); | |
| transition: all 0.3s ease; | |
| } | |
| .image-container img { | |
| max-width: 100%; | |
| height: auto; | |
| display: block; | |
| margin: 0 auto; | |
| } | |
| .image-container:hover { | |
| box-shadow: 0 0 20px rgba(0, 255, 255, 0.4); | |
| transform: translateY(-2px); | |
| } | |
| .download-btn { | |
| background: linear-gradient(45deg, #00ffff, #ff00de); | |
| border: none; | |
| padding: 12px 25px; | |
| border-radius: 8px; | |
| color: white; | |
| font-family: 'Orbitron', sans-serif; | |
| cursor: pointer; | |
| transition: all 0.3s ease; | |
| margin-top: 10px; | |
| text-align: center; | |
| text-transform: uppercase; | |
| letter-spacing: 1px; | |
| width: 100%; | |
| display: block; | |
| } | |
| .download-btn:hover { | |
| transform: translateY(-2px); | |
| box-shadow: 0 5px 15px rgba(0, 255, 255, 0.4); | |
| } | |
| @keyframes glow { | |
| from { text-shadow: 0 0 5px #ff00de, 0 0 10px #ff00de; } | |
| to { text-shadow: 0 0 10px #ff00de, 0 0 20px #ff00de; } | |
| } | |
| @media (max-width: 768px) { | |
| .title-text { font-size: 1.8em; } | |
| .subtitle-text { font-size: 1em; } | |
| .image-container { padding: 10px; } | |
| .download-btn { padding: 10px 20px; } | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| gr.Markdown(""" | |
| <h1 class="title-text">AI Background Removal</h1> | |
| <p class="subtitle-text">Remove backgrounds instantly using advanced AI technology</p> | |
| """) | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image = gr.Image( | |
| label="Upload Image", | |
| type="numpy", | |
| elem_classes="image-container" | |
| ) | |
| output_image = gr.Image( | |
| label="Result", | |
| type="numpy", | |
| show_label=True, | |
| elem_classes="image-container" | |
| ) | |
| download_button = gr.File( | |
| label="Download Processed Image", | |
| visible=True, | |
| elem_classes="download-btn" | |
| ) | |
| auto_download = gr.HTML(visible=False) | |
| input_image.change( | |
| fn=process, | |
| inputs=input_image, | |
| outputs=[output_image, download_button, auto_download] | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |