Spaces:
Sleeping
Sleeping
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torchvision.transforms.functional import normalize | |
import gradio as gr | |
from briarmbg import BriaRMBG | |
import PIL | |
from PIL import Image | |
import tempfile | |
import os | |
import time | |
import uuid | |
import shutil | |
# Load the pre-trained model | |
print("Loading model...") | |
net = BriaRMBG.from_pretrained("briaai/RMBG-1.4") | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
net.to(device) | |
net.eval() | |
print(f"Model loaded on {device}") | |
# Create output directory if it doesn't exist | |
OUTPUT_DIR = "output_images" | |
os.makedirs(OUTPUT_DIR, exist_ok=True) | |
def process(image, progress=gr.Progress()): | |
if image is None: | |
return None, None | |
try: | |
progress(0, desc="Starting processing...") | |
orig_image = Image.fromarray(image) | |
original_size = orig_image.size | |
progress(0.2, desc="Preparing image...") | |
process_image = orig_image.resize(original_size, Image.LANCZOS) | |
w, h = process_image.size | |
im_np = np.array(process_image) | |
im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2, 0, 1) | |
im_tensor = torch.unsqueeze(im_tensor, 0) | |
im_tensor = torch.divide(im_tensor, 255.0) | |
im_tensor = normalize(im_tensor, [0.5, 0.5, 0.5], [1.0, 1.0, 1.0]) | |
progress(0.4, desc="Processing with AI model...") | |
if torch.cuda.is_available(): | |
im_tensor = im_tensor.cuda() | |
with torch.no_grad(): | |
result = net(im_tensor) | |
progress(0.6, desc="Post-processing...") | |
result = torch.squeeze(F.interpolate(result[0][0], size=(h, w), mode='bilinear'), 0) | |
ma = torch.max(result) | |
mi = torch.min(result) | |
result = (result - mi) / (ma - mi) | |
result_array = (result * 255).cpu().data.numpy().astype(np.uint8) | |
pil_mask = Image.fromarray(np.squeeze(result_array)) | |
if pil_mask.size != original_size: | |
pil_mask = pil_mask.resize(original_size, Image.LANCZOS) | |
new_im = orig_image.copy() | |
new_im.putalpha(pil_mask) | |
progress(0.8, desc="Saving result...") | |
unique_id = str(uuid.uuid4())[:8] | |
filename = f"background_removed_{unique_id}.png" | |
filepath = os.path.join(OUTPUT_DIR, filename) | |
new_im.save(filepath, format='PNG', quality=100) | |
# Convert to numpy array for display | |
output_array = np.array(new_im.convert('RGBA')) | |
progress(1.0, desc="Done!") | |
return output_array, gr.update(value=filepath, visible=True) | |
except Exception as e: | |
print(f"Error processing image: {str(e)}") | |
return None, None | |
css = """ | |
@import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;500;700&display=swap'); | |
.title-text { | |
color: #ff00de; | |
font-family: 'Orbitron', sans-serif; | |
font-size: 2.5em; | |
text-align: center; | |
margin: 20px 0; | |
text-shadow: 0 0 10px rgba(255, 0, 222, 0.7); | |
animation: glow 2s ease-in-out infinite alternate; | |
} | |
.subtitle-text { | |
color: #00ffff; | |
text-align: center; | |
margin-bottom: 30px; | |
font-size: 1.2em; | |
text-shadow: 0 0 8px rgba(0, 255, 255, 0.7); | |
} | |
.image-container { | |
background: rgba(10, 10, 30, 0.3); | |
border-radius: 15px; | |
padding: 20px; | |
margin: 10px 0; | |
border: 2px solid #00ffff; | |
box-shadow: 0 0 15px rgba(0, 255, 255, 0.2); | |
transition: all 0.3s ease; | |
} | |
.image-container img { | |
max-width: 100%; | |
height: auto; | |
display: block; | |
margin: 0 auto; | |
} | |
.image-container:hover { | |
box-shadow: 0 0 20px rgba(0, 255, 255, 0.4); | |
transform: translateY(-2px); | |
} | |
.download-btn { | |
background: linear-gradient(45deg, #00ffff, #ff00de); | |
border: none; | |
padding: 12px 25px; | |
border-radius: 8px; | |
color: white; | |
font-family: 'Orbitron', sans-serif; | |
cursor: pointer; | |
transition: all 0.3s ease; | |
margin-top: 10px; | |
text-align: center; | |
text-transform: uppercase; | |
letter-spacing: 1px; | |
width: 100%; | |
display: block; | |
} | |
.download-btn:hover { | |
transform: translateY(-2px); | |
box-shadow: 0 5px 15px rgba(0, 255, 255, 0.4); | |
} | |
@keyframes glow { | |
from { text-shadow: 0 0 5px #ff00de, 0 0 10px #ff00de; } | |
to { text-shadow: 0 0 10px #ff00de, 0 0 20px #ff00de; } | |
} | |
@media (max-width: 768px) { | |
.title-text { font-size: 1.8em; } | |
.subtitle-text { font-size: 1em; } | |
.image-container { padding: 10px; } | |
.download-btn { padding: 10px 20px; } | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown(""" | |
<h1 class="title-text">AI Background Removal</h1> | |
<p class="subtitle-text">Remove backgrounds instantly using advanced AI technology</p> | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image( | |
label="Upload Image", | |
type="numpy", | |
elem_classes="image-container" | |
) | |
output_image = gr.Image( | |
label="Result", | |
type="numpy", | |
show_label=True, | |
elem_classes="image-container" | |
) | |
download_button = gr.File( | |
label="Download Processed Image", | |
visible=True, | |
elem_classes="download-btn", | |
interactive=True | |
) | |
# Add JavaScript for auto-download | |
demo.load(None, None, None, _js=""" | |
function autoDownload() { | |
const downloadButtons = document.querySelectorAll('.download-btn button'); | |
if (downloadButtons.length > 0) { | |
downloadButtons[0].click(); | |
} | |
} | |
const observer = new MutationObserver((mutations) => { | |
mutations.forEach((mutation) => { | |
if (mutation.type === 'childList') { | |
const downloadButtons = document.querySelectorAll('.download-btn button'); | |
if (downloadButtons.length > 0) { | |
setTimeout(autoDownload, 1000); | |
} | |
} | |
}); | |
}); | |
observer.observe(document.body, { childList: true, subtree: true }); | |
""") | |
input_image.change( | |
fn=process, | |
inputs=input_image, | |
outputs=[output_image, download_button] | |
) | |
if __name__ == "__main__": | |
demo.launch() |