import gradio as gr import wave import numpy as np from io import BytesIO from huggingface_hub import hf_hub_download from piper import PiperVoice from transformers import pipeline import typing import random model_path = hf_hub_download(repo_id="larcanio/piper-voices", filename="es_AR-daniela-high.onnx") config_path = hf_hub_download(repo_id="larcanio/piper-voices", filename="es_AR-daniela-high.json") voice = PiperVoice.load(model_path, config_path) with open('assets/sentences_es.txt', 'r') as r: random_quotes = [line.strip() for line in r] def synthesize_speech(text): # Create an in-memory buffer for the WAV file buffer = BytesIO() with wave.open(buffer, 'wb') as wav_file: wav_file.setframerate(voice.config.sample_rate) wav_file.setsampwidth(2) # 16-bit wav_file.setnchannels(1) # mono # Synthesize speech # eztext = preprocess_text(text) voice.synthesize(text, wav_file) # Convert buffer to NumPy array for Gradio output buffer.seek(0) audio_data = np.frombuffer(buffer.read(), dtype=np.int16) return audio_data.tobytes(), None def get_random_quote(): return random.choice(random_quotes) BANNER_TEXT = """ # Demo en español argentino con Piper [***Piper***](https://huggingface.co/rhasspy/piper-voices/) es un modelo de abierto de Texto a Voz (TTS) que permite entrenarse con voz propia, destaca por no requerir conectarse a Internet y ofrecer resultados sin exigir GPU. Inicialmente diseñado para Raspberri Pi. Este demo solo muestra español, puedes probar [voces en otros idiomas](https://rhasspy.github.io/piper-samples/). """ FOOTER_TEXT = """ # Credits [voice trained](https://huggingface.co/larcanio/piper-voices) by [larcanio](https://huggingface.co/larcanio/), [original demo](https://huggingface.co/gyroing/Persian-Piper-Model-gyro) by [gyroing](https://huggingface.co/gyroing/) on [piper's shoulders](https://huggingface.co/rhasspy/piper-voices) by [rhasspy](https://github.com/rhasspy). [More info](https://huggingface.co/spaces/igortamara/sample-tts-piper/blob/main/README.md) """ # Using Gradio Blocks with gr.Blocks(theme=gr.themes.Base(), title="Piper Argentinian voice test") as demo: gr.Markdown(BANNER_TEXT) input_text = gr.Textbox(label=" ", placeholder="Introduce el texto a leer aquí") with gr.Row(): submit_button = gr.Button("Genera audio") random_btn = gr.Button('🎲 Cita aleatoria 💬', variant='secondary') output_audio = gr.Audio(label="Audio generado", type="numpy", interactive=False, streaming=False, autoplay=True) output_text = gr.Textbox(label="Tokens generados", visible=False) gr.Markdown(FOOTER_TEXT) submit_button.click(synthesize_speech, inputs=input_text, outputs=[output_audio, output_text]) random_btn.click(fn=get_random_quote, inputs=[], outputs=[input_text]) if __name__ == '__main__': demo.launch()