igortamara's picture
Changed to use argentinian female voice
b34a77f
raw
history blame
1.97 kB
import gradio as gr
import wave
import numpy as np
from io import BytesIO
from huggingface_hub import hf_hub_download
from piper import PiperVoice
from transformers import pipeline
import typing
model_path = hf_hub_download(repo_id="larcanio/piper-voices", filename="es_AR-daniela-high.onnx")
config_path = hf_hub_download(repo_id="larcanio/piper-voices", filename="es_AR-daniela-high.json")
voice = PiperVoice.load(model_path, config_path)
def synthesize_speech(text):
# Create an in-memory buffer for the WAV file
buffer = BytesIO()
with wave.open(buffer, 'wb') as wav_file:
wav_file.setframerate(voice.config.sample_rate)
wav_file.setsampwidth(2) # 16-bit
wav_file.setnchannels(1) # mono
# Synthesize speech
# eztext = preprocess_text(text)
voice.synthesize(text, wav_file)
# Convert buffer to NumPy array for Gradio output
buffer.seek(0)
audio_data = np.frombuffer(buffer.read(), dtype=np.int16)
return audio_data.tobytes(), None
BANNER_TEXT = """
# Demo en español argentino con Piper
[***Piper***](https://huggingface.co/rhasspy/piper-voices/) es un modelo de abierto de Texto a Voz (TTS)
que permite entrenarse con voz propia, destaca por no requerir conectarse a Internet y ofrecer resultados
sin exigir GPU. Inicialmente diseñado para Raspberri Pi.
Este demo solo muestra español, puedes probar [voces en otros idiomas](https://rhasspy.github.io/piper-samples/).
"""
# Using Gradio Blocks
with gr.Blocks(theme=gr.themes.Base()) as blocks:
gr.Markdown(BANNER_TEXT)
input_text = gr.Textbox(label=" ", placeholder="Introduce el texto a leer aquí")
output_audio = gr.Audio(label="Audio generado", type="numpy")
output_text = gr.Textbox(label="Tokens generados", visible=False)
submit_button = gr.Button("Genera audio")
submit_button.click(synthesize_speech, inputs=input_text, outputs=[output_audio, output_text])
# Run the app
blocks.launch()