Spaces:
Build error
Build error
Rename onnx_guide/app.py to Image_Classification_EfficientNetLite4/app.py
Browse files- Renamed the sub-folder
- Added an additional image (previous one did not load properly)
{onnx_guide → Image_Classification_EfficientNetLite4}/app.py
RENAMED
|
@@ -71,7 +71,8 @@ def inference(img):
|
|
| 71 |
|
| 72 |
title = "EfficientNet-Lite4"
|
| 73 |
description = "EfficientNet-Lite 4 is the largest variant and most accurate of the set of EfficientNet-Lite model. It is an integer-only quantized model that produces the highest accuracy of all of the EfficientNet models. It achieves 80.4% ImageNet top-1 accuracy, while still running in real-time (e.g. 30ms/image) on a Pixel 4 CPU."
|
| 74 |
-
examples = [[hf_hub_download('nateraw/gradio-guides-files', 'catonnx.jpg', repo_type='dataset', force_filename='catonnx.jpg')]
|
|
|
|
| 75 |
|
| 76 |
interface = gr.Interface(
|
| 77 |
inference, gr.inputs.Image(type="filepath"), "label", title=title, description=description, examples=examples
|
|
|
|
| 71 |
|
| 72 |
title = "EfficientNet-Lite4"
|
| 73 |
description = "EfficientNet-Lite 4 is the largest variant and most accurate of the set of EfficientNet-Lite model. It is an integer-only quantized model that produces the highest accuracy of all of the EfficientNet models. It achieves 80.4% ImageNet top-1 accuracy, while still running in real-time (e.g. 30ms/image) on a Pixel 4 CPU."
|
| 74 |
+
examples = [[hf_hub_download('nateraw/gradio-guides-files', 'catonnx.jpg', repo_type='dataset', force_filename='catonnx.jpg')],
|
| 75 |
+
[('https://i.imgur.com/kVem6KB.jpeg'), 'cat_staring.jpg']]
|
| 76 |
|
| 77 |
interface = gr.Interface(
|
| 78 |
inference, gr.inputs.Image(type="filepath"), "label", title=title, description=description, examples=examples
|