# Load the GPT-2 large model and tokenizer model_name = "gpt2-large" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # Function to generate a blog post based on a topic title def generate_blog(topic_title, max_length=300): # Step 1: Encode the input input_ids = tokenizer.encode(topic_title, return_tensors='pt') # Step 2: Generate model output output_ids = model.generate(input_ids, max_length=max_length, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id) # Step 3: Decode the output blog_post = tokenizer.decode(output_ids[0], skip_special_tokens=True) return blog_post # Example usage topic_title = input("Enter a topic title for the blog post: ") blog_post = generate_blog(topic_title) print("\nGenerated Blog Post:\n") print(blog_post)