Spaces:
Sleeping
Sleeping
| import os | |
| os.system('pip install streamlit transformers torch') | |
| import streamlit as st | |
| from transformers import BartTokenizer, BartForConditionalGeneration | |
| # Load the model and tokenizer | |
| model_name = 'ibrahimgiki/facebook_bart_base_new' | |
| tokenizer = BartTokenizer.from_pretrained(model_name) | |
| model = BartForConditionalGeneration.from_pretrained(model_name) | |
| def summarize_text(text): | |
| inputs = tokenizer(text, return_tensors="pt", truncation=True, padding="longest") | |
| summary_ids = model.generate( | |
| inputs["input_ids"], | |
| max_length=150, | |
| min_length=30, | |
| length_penalty=2.0, | |
| num_beams=4, | |
| early_stopping=True | |
| ) | |
| summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
| return summary | |
| st.title("Text Summarization with Fine-Tuned Model") | |
| st.write("Enter text to generate a summary using the fine-tuned summarization model.") | |
| text = st.text_area("Input Text", height=200) | |
| if st.button("Summarize"): | |
| if text: | |
| with st.spinner("Summarizing..."): | |
| summary = summarize_text(text) | |
| st.success("Summary Generated") | |
| st.write(summary) | |
| else: | |
| st.warning("Please enter some text to summarize.") | |
| if __name__ == "__main__": | |
| st.set_option('deprecation.showfileUploaderEncoding', False) | |
| st.markdown( | |
| """ | |
| <style> | |
| .reportview-container { | |
| flex-direction: row; | |
| justify-content: center. | |
| } | |
| </style> | |
| """, | |
| unsafe_allow_html=True | |
| ) |