Spaces:
Sleeping
Sleeping
import os | |
os.system('pip install streamlit transformers torch') | |
import streamlit as st | |
from transformers import BartTokenizer, BartForConditionalGeneration | |
# Load the model and tokenizer | |
model_name = 'ibrahimgiki/facebook_bart_base_new' | |
tokenizer = BartTokenizer.from_pretrained(model_name) | |
model = BartForConditionalGeneration.from_pretrained(model_name) | |
def summarize_text(text): | |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding="longest") | |
summary_ids = model.generate( | |
inputs["input_ids"], | |
max_length=150, | |
min_length=30, | |
length_penalty=2.0, | |
num_beams=4, | |
early_stopping=True | |
) | |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
return summary | |
st.title("Text Summarization with Fine-Tuned Model") | |
st.write("Enter text to generate a summary using the fine-tuned summarization model.") | |
text = st.text_area("Input Text", height=200) | |
if st.button("Summarize"): | |
if text: | |
with st.spinner("Summarizing..."): | |
summary = summarize_text(text) | |
st.success("Summary Generated") | |
st.write(summary) | |
else: | |
st.warning("Please enter some text to summarize.") | |
if __name__ == "__main__": | |
st.set_option('deprecation.showfileUploaderEncoding', False) | |
st.markdown( | |
""" | |
<style> | |
.reportview-container { | |
flex-direction: row; | |
justify-content: center. | |
} | |
</style> | |
""", | |
unsafe_allow_html=True | |
) |