Spaces:
Sleeping
Sleeping
File size: 1,530 Bytes
2e1a6db 02f0188 2e1a6db 7562d6c 2e1a6db 02f0188 2e1a6db 7562d6c 2e1a6db 7562d6c 2e1a6db 7562d6c 2e1a6db b96adaf cdf175e f0f2775 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import os
os.system('pip install streamlit transformers torch')
import streamlit as st
from transformers import BartTokenizer, BartForConditionalGeneration
# Load the model and tokenizer
model_name = 'ibrahimgiki/facebook_bart_base_new'
tokenizer = BartTokenizer.from_pretrained(model_name)
model = BartForConditionalGeneration.from_pretrained(model_name)
def summarize_text(text):
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding="longest")
summary_ids = model.generate(
inputs["input_ids"],
max_length=150,
min_length=30,
length_penalty=2.0,
num_beams=4,
early_stopping=True
)
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
return summary
st.title("Text Summarization with Fine-Tuned Model")
st.write("Enter text to generate a summary using the fine-tuned summarization model.")
text = st.text_area("Input Text", height=200)
if st.button("Summarize"):
if text:
with st.spinner("Summarizing..."):
summary = summarize_text(text)
st.success("Summary Generated")
st.write(summary)
else:
st.warning("Please enter some text to summarize.")
if __name__ == "__main__":
st.set_option('deprecation.showfileUploaderEncoding', False)
st.markdown(
"""
<style>
.reportview-container {
flex-direction: row;
justify-content: center.
}
</style>
""",
unsafe_allow_html=True
) |