iaravagni commited on
Commit
83f27e8
·
1 Parent(s): c209583
Files changed (1) hide show
  1. glucose_app.py +5 -7
glucose_app.py CHANGED
@@ -10,7 +10,6 @@ from scripts.make_dataset import create_features
10
  from scripts.naive_approach import get_column_specs, prepare_data, zeroshot_eval, simple_diagonal_averaging
11
  from scripts.ml_approach import format_dataset
12
 
13
- SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))
14
  CONTEXT_LENGTH = 52
15
  PREDICTION_LENGTH = 6
16
 
@@ -211,7 +210,7 @@ if data_option == "Upload files":
211
  show_tabs = True
212
 
213
  elif data_option == "Sample A":
214
- combined_data_path = os.path.join(SCRIPT_DIR, '..', 'data', 'processed', 'samples', 'sample_A.csv')
215
  combined_data = pd.read_csv(combined_data_path)
216
  st.session_state.combined_data = combined_data
217
  st.session_state.data_processed = True
@@ -219,7 +218,7 @@ elif data_option == "Sample A":
219
  show_tabs = True
220
 
221
  elif data_option == "Sample B":
222
- combined_data_path = os.path.join(SCRIPT_DIR, '..', 'data', 'processed', 'samples', 'sample_B.csv')
223
  combined_data = pd.read_csv(combined_data_path)
224
  st.session_state.combined_data = combined_data
225
  st.session_state.data_processed = True
@@ -246,8 +245,7 @@ if show_tabs:
246
  # Call naive model prediction functions
247
  column_specs = get_column_specs()
248
  prepared_data = prepare_data(combined_data, column_specs["timestamp_column"])
249
-
250
- train_file = os.path.join(SCRIPT_DIR, '..', 'data', 'processed', 'train_dataset.csv')
251
  train_data = pd.read_csv(train_file)
252
  train_data = prepare_data(train_data, column_specs["timestamp_column"])
253
  predictions = zeroshot_eval(
@@ -317,7 +315,7 @@ if show_tabs:
317
  if combined_data is not None:
318
  X_test, y_test = format_dataset(combined_data, CONTEXT_LENGTH, PREDICTION_LENGTH)
319
 
320
- model_output_path = os.path.join(SCRIPT_DIR, '..', 'models', 'xgb_model.pkl')
321
  xgb_model = joblib.load(model_output_path)
322
 
323
  y_test_pred = xgb_model.predict(X_test)
@@ -379,7 +377,7 @@ if show_tabs:
379
  column_specs = get_column_specs()
380
  prepared_data = prepare_data(combined_data, column_specs["timestamp_column"])
381
 
382
- train_file = os.path.join(SCRIPT_DIR, '..', 'data', 'processed', 'train_dataset.csv')
383
  train_data = pd.read_csv(train_file)
384
  train_data = prepare_data(train_data, column_specs["timestamp_column"])
385
  predictions = zeroshot_eval(
 
10
  from scripts.naive_approach import get_column_specs, prepare_data, zeroshot_eval, simple_diagonal_averaging
11
  from scripts.ml_approach import format_dataset
12
 
 
13
  CONTEXT_LENGTH = 52
14
  PREDICTION_LENGTH = 6
15
 
 
210
  show_tabs = True
211
 
212
  elif data_option == "Sample A":
213
+ combined_data_path = '../data/processed/samples/sample_A.csv'
214
  combined_data = pd.read_csv(combined_data_path)
215
  st.session_state.combined_data = combined_data
216
  st.session_state.data_processed = True
 
218
  show_tabs = True
219
 
220
  elif data_option == "Sample B":
221
+ combined_data_path = '../data/processed/samples/sample_B.csv'
222
  combined_data = pd.read_csv(combined_data_path)
223
  st.session_state.combined_data = combined_data
224
  st.session_state.data_processed = True
 
245
  # Call naive model prediction functions
246
  column_specs = get_column_specs()
247
  prepared_data = prepare_data(combined_data, column_specs["timestamp_column"])
248
+ train_file = '../data/processed/train_dataset.csv'
 
249
  train_data = pd.read_csv(train_file)
250
  train_data = prepare_data(train_data, column_specs["timestamp_column"])
251
  predictions = zeroshot_eval(
 
315
  if combined_data is not None:
316
  X_test, y_test = format_dataset(combined_data, CONTEXT_LENGTH, PREDICTION_LENGTH)
317
 
318
+ model_output_path = "../models/xgb_model.pkl"
319
  xgb_model = joblib.load(model_output_path)
320
 
321
  y_test_pred = xgb_model.predict(X_test)
 
377
  column_specs = get_column_specs()
378
  prepared_data = prepare_data(combined_data, column_specs["timestamp_column"])
379
 
380
+ train_file = '../data/processed/train_dataset.csv'
381
  train_data = pd.read_csv(train_file)
382
  train_data = prepare_data(train_data, column_specs["timestamp_column"])
383
  predictions = zeroshot_eval(