Spaces:
Runtime error
Runtime error
iaravagni
commited on
Commit
·
83f27e8
1
Parent(s):
c209583
update
Browse files- glucose_app.py +5 -7
glucose_app.py
CHANGED
|
@@ -10,7 +10,6 @@ from scripts.make_dataset import create_features
|
|
| 10 |
from scripts.naive_approach import get_column_specs, prepare_data, zeroshot_eval, simple_diagonal_averaging
|
| 11 |
from scripts.ml_approach import format_dataset
|
| 12 |
|
| 13 |
-
SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))
|
| 14 |
CONTEXT_LENGTH = 52
|
| 15 |
PREDICTION_LENGTH = 6
|
| 16 |
|
|
@@ -211,7 +210,7 @@ if data_option == "Upload files":
|
|
| 211 |
show_tabs = True
|
| 212 |
|
| 213 |
elif data_option == "Sample A":
|
| 214 |
-
combined_data_path =
|
| 215 |
combined_data = pd.read_csv(combined_data_path)
|
| 216 |
st.session_state.combined_data = combined_data
|
| 217 |
st.session_state.data_processed = True
|
|
@@ -219,7 +218,7 @@ elif data_option == "Sample A":
|
|
| 219 |
show_tabs = True
|
| 220 |
|
| 221 |
elif data_option == "Sample B":
|
| 222 |
-
combined_data_path =
|
| 223 |
combined_data = pd.read_csv(combined_data_path)
|
| 224 |
st.session_state.combined_data = combined_data
|
| 225 |
st.session_state.data_processed = True
|
|
@@ -246,8 +245,7 @@ if show_tabs:
|
|
| 246 |
# Call naive model prediction functions
|
| 247 |
column_specs = get_column_specs()
|
| 248 |
prepared_data = prepare_data(combined_data, column_specs["timestamp_column"])
|
| 249 |
-
|
| 250 |
-
train_file = os.path.join(SCRIPT_DIR, '..', 'data', 'processed', 'train_dataset.csv')
|
| 251 |
train_data = pd.read_csv(train_file)
|
| 252 |
train_data = prepare_data(train_data, column_specs["timestamp_column"])
|
| 253 |
predictions = zeroshot_eval(
|
|
@@ -317,7 +315,7 @@ if show_tabs:
|
|
| 317 |
if combined_data is not None:
|
| 318 |
X_test, y_test = format_dataset(combined_data, CONTEXT_LENGTH, PREDICTION_LENGTH)
|
| 319 |
|
| 320 |
-
model_output_path =
|
| 321 |
xgb_model = joblib.load(model_output_path)
|
| 322 |
|
| 323 |
y_test_pred = xgb_model.predict(X_test)
|
|
@@ -379,7 +377,7 @@ if show_tabs:
|
|
| 379 |
column_specs = get_column_specs()
|
| 380 |
prepared_data = prepare_data(combined_data, column_specs["timestamp_column"])
|
| 381 |
|
| 382 |
-
train_file =
|
| 383 |
train_data = pd.read_csv(train_file)
|
| 384 |
train_data = prepare_data(train_data, column_specs["timestamp_column"])
|
| 385 |
predictions = zeroshot_eval(
|
|
|
|
| 10 |
from scripts.naive_approach import get_column_specs, prepare_data, zeroshot_eval, simple_diagonal_averaging
|
| 11 |
from scripts.ml_approach import format_dataset
|
| 12 |
|
|
|
|
| 13 |
CONTEXT_LENGTH = 52
|
| 14 |
PREDICTION_LENGTH = 6
|
| 15 |
|
|
|
|
| 210 |
show_tabs = True
|
| 211 |
|
| 212 |
elif data_option == "Sample A":
|
| 213 |
+
combined_data_path = '../data/processed/samples/sample_A.csv'
|
| 214 |
combined_data = pd.read_csv(combined_data_path)
|
| 215 |
st.session_state.combined_data = combined_data
|
| 216 |
st.session_state.data_processed = True
|
|
|
|
| 218 |
show_tabs = True
|
| 219 |
|
| 220 |
elif data_option == "Sample B":
|
| 221 |
+
combined_data_path = '../data/processed/samples/sample_B.csv'
|
| 222 |
combined_data = pd.read_csv(combined_data_path)
|
| 223 |
st.session_state.combined_data = combined_data
|
| 224 |
st.session_state.data_processed = True
|
|
|
|
| 245 |
# Call naive model prediction functions
|
| 246 |
column_specs = get_column_specs()
|
| 247 |
prepared_data = prepare_data(combined_data, column_specs["timestamp_column"])
|
| 248 |
+
train_file = '../data/processed/train_dataset.csv'
|
|
|
|
| 249 |
train_data = pd.read_csv(train_file)
|
| 250 |
train_data = prepare_data(train_data, column_specs["timestamp_column"])
|
| 251 |
predictions = zeroshot_eval(
|
|
|
|
| 315 |
if combined_data is not None:
|
| 316 |
X_test, y_test = format_dataset(combined_data, CONTEXT_LENGTH, PREDICTION_LENGTH)
|
| 317 |
|
| 318 |
+
model_output_path = "../models/xgb_model.pkl"
|
| 319 |
xgb_model = joblib.load(model_output_path)
|
| 320 |
|
| 321 |
y_test_pred = xgb_model.predict(X_test)
|
|
|
|
| 377 |
column_specs = get_column_specs()
|
| 378 |
prepared_data = prepare_data(combined_data, column_specs["timestamp_column"])
|
| 379 |
|
| 380 |
+
train_file = '../data/processed/train_dataset.csv'
|
| 381 |
train_data = pd.read_csv(train_file)
|
| 382 |
train_data = prepare_data(train_data, column_specs["timestamp_column"])
|
| 383 |
predictions = zeroshot_eval(
|