import gradio as gr import joblib import numpy as np from huggingface_hub import hf_hub_download # Download models from Hugging Face Hub svr_path = hf_hub_download(repo_id="iamomtiwari/Nutrition-regression-models", filename="svr_model.pkl") lr_path = hf_hub_download(repo_id="iamomtiwari/Nutrition-regression-models", filename="linear_regression.pkl") # Load models svr_model = joblib.load(svr_path) linear_reg = joblib.load(lr_path) # Selected 10 important features features = ['Caloric Value', 'Fat', 'Saturated Fats', 'Carbohydrates', 'Sugars', 'Protein', 'Cholesterol', 'Sodium', 'Calcium', 'Iron'] # Define prediction function def predict(model_name, *inputs): input_data = np.array([inputs]).reshape(1, -1) if model_name == "SVR": prediction = svr_model.predict(input_data)[0] else: prediction = linear_reg.predict(input_data)[0] return round(prediction, 4) # Gradio Interface with gr.Blocks() as demo: gr.Markdown("# Nutrition Density Prediction") model_choice = gr.Radio(["SVR", "Linear Regression"], label="Select Model") input_widgets = [gr.Slider(minimum=0, maximum=100, step=0.1, label=feature) for feature in features] predict_button = gr.Button("Predict") clear_button = gr.Button("Clear") output_label = gr.Textbox(label="Prediction") predict_button.click(predict, inputs=[model_choice] + input_widgets, outputs=output_label) # Reset sliders to their default value (0) on "Clear" def reset_sliders(): return [0] * len(features) clear_button.click(reset_sliders, inputs=[], outputs=input_widgets) # Run the app demo.launch()