Spaces:
Sleeping
Sleeping
corumbus
commited on
Commit
·
d1c8f90
1
Parent(s):
e63a4b0
update
Browse files- Dockerfile +20 -0
- app.py +312 -0
- requirements.txt +13 -0
Dockerfile
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
| 2 |
+
# you will also find guides on how best to write your Dockerfile
|
| 3 |
+
|
| 4 |
+
FROM python:3.9
|
| 5 |
+
|
| 6 |
+
RUN useradd -m -u 1000 user
|
| 7 |
+
USER user
|
| 8 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
| 9 |
+
|
| 10 |
+
WORKDIR /app
|
| 11 |
+
|
| 12 |
+
COPY --chown=user ./requirements.txt requirements.txt
|
| 13 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
| 14 |
+
|
| 15 |
+
COPY --chown=user . /app
|
| 16 |
+
|
| 17 |
+
EXPOSE 7860
|
| 18 |
+
|
| 19 |
+
# Run the Gradio app
|
| 20 |
+
CMD ["python", "app.py"]
|
app.py
ADDED
|
@@ -0,0 +1,312 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import stat
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from llama_index.core.postprocessor import SimilarityPostprocessor
|
| 4 |
+
from llama_index.core.postprocessor import SentenceTransformerRerank
|
| 5 |
+
from llama_index.core.postprocessor import MetadataReplacementPostProcessor
|
| 6 |
+
from llama_index.core import StorageContext
|
| 7 |
+
import chromadb
|
| 8 |
+
from llama_index.vector_stores.chroma import ChromaVectorStore
|
| 9 |
+
import zipfile
|
| 10 |
+
import requests
|
| 11 |
+
import torch
|
| 12 |
+
from llama_index.core import Settings
|
| 13 |
+
from llama_index.llms.huggingface import HuggingFaceLLM
|
| 14 |
+
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
|
| 15 |
+
import sys
|
| 16 |
+
import logging
|
| 17 |
+
import os
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
enable_rerank = True
|
| 21 |
+
# sentence_window,naive,recursive_retrieval
|
| 22 |
+
retrieval_strategy = "sentence_window"
|
| 23 |
+
base_embedding_source = "hf" # local,openai,hf
|
| 24 |
+
# intfloat/multilingual-e5-small local:BAAI/bge-small-en-v1.5 text-embedding-3-small nvidia/NV-Embed-v2 Alibaba-NLP/gte-large-en-v1.5
|
| 25 |
+
base_embedding_model = "Alibaba-NLP/gte-large-en-v1.5"
|
| 26 |
+
# meta-llama/Llama-3.1-8B meta-llama/Llama-3.2-3B-Instruct meta-llama/Llama-2-7b-chat-hf google/gemma-2-9b CohereForAI/c4ai-command-r-plus CohereForAI/aya-23-8B
|
| 27 |
+
base_llm_model = "mistralai/Mistral-7B-Instruct-v0.3"
|
| 28 |
+
# AdaptLLM/finance-chat
|
| 29 |
+
base_llm_source = "hf" # cohere,hf,anthropic
|
| 30 |
+
base_similarity_top_k = 20
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
# ChromaDB
|
| 34 |
+
env_extension = "_large" # _large _dev_window _large_window
|
| 35 |
+
db_collection = f"gte{env_extension}" # intfloat gte
|
| 36 |
+
read_db = True
|
| 37 |
+
active_chroma = True
|
| 38 |
+
root_path = "."
|
| 39 |
+
chroma_db_path = f"{root_path}/chroma_db" # ./chroma_db
|
| 40 |
+
# ./processed_files.json
|
| 41 |
+
processed_files_log = f"{root_path}/processed_files{env_extension}.json"
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
# check hyperparameter
|
| 45 |
+
if retrieval_strategy not in ["sentence_window", "naive"]: # recursive_retrieval
|
| 46 |
+
raise Exception(f"{retrieval_strategy} retrieval_strategy is not support")
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
os.environ["OPENAI_API_KEY"] = 'sk-xxxxxxxxxx'
|
| 50 |
+
hf_api_key = os.getenv("HF_API_KEY")
|
| 51 |
+
|
| 52 |
+
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
|
| 53 |
+
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
torch.cuda.empty_cache()
|
| 57 |
+
|
| 58 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
|
| 59 |
+
|
| 60 |
+
print(f"loading embedding ..{base_embedding_model}")
|
| 61 |
+
if base_embedding_source == 'hf':
|
| 62 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
| 63 |
+
Settings.embed_model = HuggingFaceEmbedding(
|
| 64 |
+
model_name=base_embedding_model, trust_remote_code=True) # ,
|
| 65 |
+
else:
|
| 66 |
+
raise Exception("embedding model is invalid")
|
| 67 |
+
|
| 68 |
+
# setup prompts - specific to StableLM
|
| 69 |
+
if base_llm_source == 'hf':
|
| 70 |
+
from llama_index.core import PromptTemplate
|
| 71 |
+
|
| 72 |
+
# This will wrap the default prompts that are internal to llama-index
|
| 73 |
+
# taken from https://huggingface.co/Writer/camel-5b-hf
|
| 74 |
+
query_wrapper_prompt = PromptTemplate(
|
| 75 |
+
"Below is an instruction that describes a task. "
|
| 76 |
+
"you need to make sure that user's question and retrived context mention the same stock symbol if not please give no answer to user"
|
| 77 |
+
"Write a response that appropriately completes the request.\n\n"
|
| 78 |
+
"### Instruction:\n{query_str}\n\n### Response:"
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
if base_llm_source == 'hf':
|
| 82 |
+
llm = HuggingFaceLLM(
|
| 83 |
+
context_window=2048,
|
| 84 |
+
max_new_tokens=512, # 256
|
| 85 |
+
generate_kwargs={"temperature": 0.1, "do_sample": False}, # 0.25
|
| 86 |
+
query_wrapper_prompt=query_wrapper_prompt,
|
| 87 |
+
tokenizer_name=base_llm_model,
|
| 88 |
+
model_name=base_llm_model,
|
| 89 |
+
device_map="auto",
|
| 90 |
+
tokenizer_kwargs={"max_length": 2048},
|
| 91 |
+
# uncomment this if using CUDA to reduce memory usage
|
| 92 |
+
model_kwargs={"torch_dtype": torch.float16}
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
Settings.chunk_size = 512
|
| 96 |
+
Settings.llm = llm
|
| 97 |
+
|
| 98 |
+
"""#### Load documents, build the VectorStoreIndex"""
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def download_and_extract_chroma_db(url, destination):
|
| 102 |
+
"""Download and extract ChromaDB from Hugging Face Datasets."""
|
| 103 |
+
# Create destination folder if it doesn't exist
|
| 104 |
+
if not os.path.exists(destination):
|
| 105 |
+
os.makedirs(destination)
|
| 106 |
+
else:
|
| 107 |
+
# If the folder exists, remove it to ensure a fresh extract
|
| 108 |
+
print("Destination folder exists. Removing it...")
|
| 109 |
+
for root, dirs, files in os.walk(destination, topdown=False):
|
| 110 |
+
for file in files:
|
| 111 |
+
os.remove(os.path.join(root, file))
|
| 112 |
+
for dir in dirs:
|
| 113 |
+
os.rmdir(os.path.join(root, dir))
|
| 114 |
+
print("Destination folder cleared.")
|
| 115 |
+
|
| 116 |
+
db_zip_path = os.path.join(destination, "chroma_db.zip")
|
| 117 |
+
if not os.path.exists(db_zip_path):
|
| 118 |
+
# Download the ChromaDB zip file
|
| 119 |
+
print("Downloading ChromaDB from Hugging Face Datasets...")
|
| 120 |
+
headers = {
|
| 121 |
+
"Authorization": f"Bearer {hf_api_key}"
|
| 122 |
+
}
|
| 123 |
+
response = requests.get(url, headers=headers, stream=True)
|
| 124 |
+
response.raise_for_status()
|
| 125 |
+
with open(db_zip_path, "wb") as f:
|
| 126 |
+
for chunk in response.iter_content(chunk_size=8192):
|
| 127 |
+
f.write(chunk)
|
| 128 |
+
print("Download completed.")
|
| 129 |
+
else:
|
| 130 |
+
print("Zip file already exists, skipping download.")
|
| 131 |
+
|
| 132 |
+
# Extract the zip file
|
| 133 |
+
print("Extracting ChromaDB...")
|
| 134 |
+
with zipfile.ZipFile(db_zip_path, 'r') as zip_ref:
|
| 135 |
+
zip_ref.extractall(destination)
|
| 136 |
+
print("Extraction completed. Zip file retained.")
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
# URL to your dataset hosted on Hugging Face
|
| 140 |
+
chroma_db_url = "https://huggingface.co/datasets/iamboolean/set50-db/resolve/main/chroma_db.zip"
|
| 141 |
+
|
| 142 |
+
# Local destination for the ChromaDB
|
| 143 |
+
chroma_db_path_extract = "./" # You can change this to your desired path
|
| 144 |
+
|
| 145 |
+
# Download and extract the ChromaDB
|
| 146 |
+
download_and_extract_chroma_db(chroma_db_url, chroma_db_path_extract)
|
| 147 |
+
|
| 148 |
+
# Define ChromaDB client (persistent mode)er
|
| 149 |
+
db = chromadb.PersistentClient(path=chroma_db_path)
|
| 150 |
+
print(f"db path:{chroma_db_path}")
|
| 151 |
+
chroma_collection = db.get_or_create_collection(db_collection)
|
| 152 |
+
print(f"db collection:{db_collection}")
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
# Set up ChromaVectorStore and embeddings
|
| 156 |
+
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
|
| 157 |
+
storage_context = StorageContext.from_defaults(vector_store=vector_store)
|
| 158 |
+
|
| 159 |
+
document_count = chroma_collection.count()
|
| 160 |
+
print(f"Total documents in the collection: {document_count}")
|
| 161 |
+
|
| 162 |
+
index = VectorStoreIndex.from_vector_store(
|
| 163 |
+
vector_store=vector_store,
|
| 164 |
+
# embed_model=embed_model,
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
"""#### Query Index"""
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
rerank = SentenceTransformerRerank(
|
| 171 |
+
model="cross-encoder/ms-marco-MiniLM-L-2-v2", top_n=10
|
| 172 |
+
)
|
| 173 |
+
node_postprocessors = []
|
| 174 |
+
# node_postprocessors.append(SimilarityPostprocessor(similarity_cutoff=0.6))
|
| 175 |
+
|
| 176 |
+
if retrieval_strategy == 'sentence_window':
|
| 177 |
+
node_postprocessors.append(
|
| 178 |
+
MetadataReplacementPostProcessor(target_metadata_key="window"))
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
if enable_rerank:
|
| 182 |
+
node_postprocessors.append(rerank)
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
query_engine = index.as_query_engine(
|
| 186 |
+
similarity_top_k=base_similarity_top_k,
|
| 187 |
+
# the target key defaults to `window` to match the node_parser's default
|
| 188 |
+
node_postprocessors=node_postprocessors,
|
| 189 |
+
)
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
def metadata_formatter(metadata):
|
| 193 |
+
company_symbol = metadata['file_name'].split(
|
| 194 |
+
'-')[0] # Split at '-' and take the first part
|
| 195 |
+
# Split at '-' and then '.' to extract the year
|
| 196 |
+
year = metadata['file_name'].split('-')[1].split('.')[0]
|
| 197 |
+
page_number = metadata['page_label']
|
| 198 |
+
|
| 199 |
+
return f"Company File: {metadata['file_name'].split('-')[0]}, Year: {metadata['file_name'].split('-')[1].split('.')[0]}, Page Number: {metadata['page_label']}"
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
def query_journal(question):
|
| 203 |
+
|
| 204 |
+
response = query_engine.query(question) # Query the index
|
| 205 |
+
matched_nodes = response.source_nodes # Extract matched nodes
|
| 206 |
+
|
| 207 |
+
# Prepare the matched nodes details
|
| 208 |
+
retrieved_context = "\n".join([
|
| 209 |
+
# f"Node ID: {node.node_id}\n"
|
| 210 |
+
# f"Matched Content: {node.node.text}\n"
|
| 211 |
+
# f"Metadata: {node.node.metadata if node.node.metadata else 'None'}"
|
| 212 |
+
f"Metadata: {metadata_formatter(node.node.metadata) if node.node.metadata else 'None'}"
|
| 213 |
+
for node in matched_nodes
|
| 214 |
+
])
|
| 215 |
+
|
| 216 |
+
generated_answer = str(response)
|
| 217 |
+
|
| 218 |
+
# Return both retrieved context and detailed matched nodes
|
| 219 |
+
return retrieved_context, generated_answer
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
# Define the Gradio interface
|
| 223 |
+
with gr.Blocks() as app:
|
| 224 |
+
# Title
|
| 225 |
+
gr.Markdown(
|
| 226 |
+
"""
|
| 227 |
+
<div style="text-align: center;">
|
| 228 |
+
<h1>SET50RAG: Retrieval-Augmented Generation for Thai Public Companies Question Answering</h1>
|
| 229 |
+
</div>
|
| 230 |
+
"""
|
| 231 |
+
)
|
| 232 |
+
|
| 233 |
+
# Description
|
| 234 |
+
gr.Markdown(
|
| 235 |
+
"""
|
| 236 |
+
The **SET50RAG** tool provides an interactive way to analyze and extract insights from **243 annual reports** of Thai public companies spanning **5 years**.
|
| 237 |
+
By leveraging advanced **Retrieval-Augmented Generation**, including **GTE-Large embedding models**, **Sentence Window with Reranking**, and powerful **Large Language Models (LLMs)** like **Mistral-7B**, the system efficiently retrieves and answers complex financial queries.
|
| 238 |
+
This scalable and cost-effective solution reduces reliance on parametric knowledge, ensuring contextually accurate and relevant responses.
|
| 239 |
+
"""
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
# How to Use Section
|
| 243 |
+
gr.Markdown(
|
| 244 |
+
"""
|
| 245 |
+
### How to Use
|
| 246 |
+
1. Type your question in the box or select an example question below.
|
| 247 |
+
2. Click **Submit** to retrieve the context and get an AI-generated answer.
|
| 248 |
+
3. Review the retrieved context and the generated answer to gain insights.
|
| 249 |
+
---
|
| 250 |
+
"""
|
| 251 |
+
)
|
| 252 |
+
|
| 253 |
+
# Example Questions Section
|
| 254 |
+
gr.Markdown(
|
| 255 |
+
"""
|
| 256 |
+
### Example Questions
|
| 257 |
+
- What is the revenue of PTTOR in 2022?
|
| 258 |
+
- what is effect of COVID-19 on BDMS show me in Timeline format from 2019 to 2023?
|
| 259 |
+
- How does CPALL plan for electric vehicles?
|
| 260 |
+
"""
|
| 261 |
+
)
|
| 262 |
+
|
| 263 |
+
# Interactive Section (RAG Box)
|
| 264 |
+
with gr.Row():
|
| 265 |
+
with gr.Column():
|
| 266 |
+
user_question = gr.Textbox(
|
| 267 |
+
label="Ask a Question",
|
| 268 |
+
placeholder="Type your question here, e.g., 'What is the revenue of PTTOR in 2022?'",
|
| 269 |
+
)
|
| 270 |
+
example_question_button = gr.Button("Use Example Question")
|
| 271 |
+
with gr.Column():
|
| 272 |
+
generated_answer = gr.Textbox(
|
| 273 |
+
label="Generated Answer",
|
| 274 |
+
placeholder="The AI-generated answer will appear here.",
|
| 275 |
+
interactive=False,
|
| 276 |
+
)
|
| 277 |
+
retrieved_context = gr.Textbox(
|
| 278 |
+
label="Retrieved Context",
|
| 279 |
+
placeholder="Relevant context will appear here.",
|
| 280 |
+
interactive=False,
|
| 281 |
+
)
|
| 282 |
+
|
| 283 |
+
# Button for user interaction
|
| 284 |
+
submit_button = gr.Button("Submit")
|
| 285 |
+
|
| 286 |
+
# Example question logic
|
| 287 |
+
def use_example_question():
|
| 288 |
+
return "What is the revenue of PTTOR in 2022?"
|
| 289 |
+
|
| 290 |
+
example_question_button.click(
|
| 291 |
+
use_example_question, inputs=[], outputs=[user_question]
|
| 292 |
+
)
|
| 293 |
+
|
| 294 |
+
# Interaction logic for submitting user queries
|
| 295 |
+
submit_button.click(
|
| 296 |
+
query_journal, inputs=[user_question], outputs=[
|
| 297 |
+
retrieved_context, generated_answer]
|
| 298 |
+
)
|
| 299 |
+
|
| 300 |
+
# Footer
|
| 301 |
+
gr.Markdown(
|
| 302 |
+
"""
|
| 303 |
+
---
|
| 304 |
+
### Limitations and Bias:
|
| 305 |
+
- Optimized for Thai financial reports from SET50 companies. Results may vary for other domains.
|
| 306 |
+
- Retrieval and accuracy depend on data quality and embedding models.
|
| 307 |
+
"""
|
| 308 |
+
)
|
| 309 |
+
|
| 310 |
+
# Launch the app
|
| 311 |
+
# app.launch()
|
| 312 |
+
app.launch(server_name="0.0.0.0") # , server_port=7860
|
requirements.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
ragas==0.1.22
|
| 2 |
+
gradio==4.44.1
|
| 3 |
+
llama-index
|
| 4 |
+
llama-index-llms-huggingface
|
| 5 |
+
llama_index-embeddings-huggingface
|
| 6 |
+
llama_index-llms-cohere
|
| 7 |
+
llama-index-embeddings-instructor
|
| 8 |
+
datasets
|
| 9 |
+
transformers
|
| 10 |
+
llama-index-embeddings-huggingface
|
| 11 |
+
chromadb
|
| 12 |
+
llama-index-vector-stores-chroma
|
| 13 |
+
sentencepiece
|