Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| # -*- coding: utf-8 -*- | |
| import os | |
| import pickle | |
| from functools import lru_cache | |
| import pytesseract | |
| import numpy as np | |
| from PIL import Image | |
| import torch | |
| from torchvision.transforms import ToTensor | |
| PAD_TOKEN_BOX = [0, 0, 0, 0] | |
| GRID_SIZE = 1000 | |
| def normalize_box(box, width, height, size=1000): | |
| """ | |
| Takes a bounding box and normalizes it to a thousand pixels. If you notice it is | |
| just like calculating percentage except takes 1000 instead of 100. | |
| """ | |
| return [ | |
| int(size * (box[0] / width)), | |
| int(size * (box[1] / height)), | |
| int(size * (box[2] / width)), | |
| int(size * (box[3] / height)), | |
| ] | |
| def resize_align_bbox(bbox, orig_w, orig_h, target_w, target_h): | |
| x_scale = target_w / orig_w | |
| y_scale = target_h / orig_h | |
| orig_left, orig_top, orig_right, orig_bottom = bbox | |
| x = int(np.round(orig_left * x_scale)) | |
| y = int(np.round(orig_top * y_scale)) | |
| xmax = int(np.round(orig_right * x_scale)) | |
| ymax = int(np.round(orig_bottom * y_scale)) | |
| return [x, y, xmax, ymax] | |
| def get_topleft_bottomright_coordinates(df_row): | |
| left, top, width, height = df_row["left"], df_row["top"], df_row["width"], df_row["height"] | |
| return [left, top, left + width, top + height] | |
| def apply_ocr(image_fp): | |
| """ | |
| Returns words and its bounding boxes from an image | |
| """ | |
| image = Image.open(image_fp) | |
| width, height = image.size | |
| ocr_df = pytesseract.image_to_data(image, output_type="data.frame") | |
| ocr_df = ocr_df.dropna().reset_index(drop=True) | |
| float_cols = ocr_df.select_dtypes("float").columns | |
| ocr_df[float_cols] = ocr_df[float_cols].round(0).astype(int) | |
| ocr_df = ocr_df.replace(r"^\s*$", np.nan, regex=True) | |
| ocr_df = ocr_df.dropna().reset_index(drop=True) | |
| words = list(ocr_df.text.apply(lambda x: str(x).strip())) | |
| actual_bboxes = ocr_df.apply(get_topleft_bottomright_coordinates, axis=1).values.tolist() | |
| # add as extra columns | |
| assert len(words) == len(actual_bboxes) | |
| return {"words": words, "bbox": actual_bboxes} | |
| def get_tokens_with_boxes(unnormalized_word_boxes, pad_token_box, word_ids,max_seq_len = 512): | |
| # assert len(unnormalized_word_boxes) == len(word_ids), this should not be applied, since word_ids may have higher | |
| # length and the bbox corresponding to them may not exist | |
| unnormalized_token_boxes = [] | |
| for i, word_idx in enumerate(word_ids): | |
| if word_idx is None: | |
| break | |
| unnormalized_token_boxes.append(unnormalized_word_boxes[word_idx]) | |
| # all remaining are padding tokens so why add them in a loop one by one | |
| num_pad_tokens = len(word_ids) - i - 1 | |
| if num_pad_tokens > 0: | |
| unnormalized_token_boxes.extend([pad_token_box] * num_pad_tokens) | |
| if len(unnormalized_token_boxes)<max_seq_len: | |
| unnormalized_token_boxes.extend([pad_token_box] * (max_seq_len-len(unnormalized_token_boxes))) | |
| return unnormalized_token_boxes | |
| def get_centroid(actual_bbox): | |
| centroid = [] | |
| for i in actual_bbox: | |
| width = i[2] - i[0] | |
| height = i[3] - i[1] | |
| centroid.append([i[0] + width / 2, i[1] + height / 2]) | |
| return centroid | |
| def get_pad_token_id_start_index(words, encoding, tokenizer): | |
| # assert len(words) < len(encoding["input_ids"]) This condition, was creating errors on some sample images | |
| for idx in range(len(encoding["input_ids"])): | |
| if encoding["input_ids"][idx] == tokenizer.pad_token_id: | |
| break | |
| return idx | |
| def get_relative_distance(bboxes, centroids, pad_tokens_start_idx): | |
| a_rel_x = [] | |
| a_rel_y = [] | |
| for i in range(0, len(bboxes)-1): | |
| if i >= pad_tokens_start_idx: | |
| a_rel_x.append([0] * 8) | |
| a_rel_y.append([0] * 8) | |
| continue | |
| curr = bboxes[i] | |
| next = bboxes[i+1] | |
| a_rel_x.append( | |
| [ | |
| curr[0], # top left x | |
| curr[2], # bottom right x | |
| curr[2] - curr[0], # width | |
| next[0] - curr[0], # diff top left x | |
| next[0] - curr[0], # diff bottom left x | |
| next[2] - curr[2], # diff top right x | |
| next[2] - curr[2], # diff bottom right x | |
| centroids[i+1][0] - centroids[i][0], | |
| ] | |
| ) | |
| a_rel_y.append( | |
| [ | |
| curr[1], # top left y | |
| curr[3], # bottom right y | |
| curr[3] - curr[1], # height | |
| next[1] - curr[1], # diff top left y | |
| next[3] - curr[3], # diff bottom left y | |
| next[1] - curr[1], # diff top right y | |
| next[3] - curr[3], # diff bottom right y | |
| centroids[i+1][1] - centroids[i][1], | |
| ] | |
| ) | |
| # For the last word | |
| a_rel_x.append([0]*8) | |
| a_rel_y.append([0]*8) | |
| return a_rel_x, a_rel_y | |
| def apply_mask(inputs, tokenizer): | |
| inputs = torch.as_tensor(inputs) | |
| rand = torch.rand(inputs.shape) | |
| # where the random array is less than 0.15, we set true | |
| mask_arr = (rand < 0.15) * (inputs != tokenizer.cls_token_id) * (inputs != tokenizer.pad_token_id) | |
| # create selection from mask_arr | |
| selection = torch.flatten(mask_arr.nonzero()).tolist() | |
| # apply selection pad_tokens_start_idx to inputs.input_ids, adding MASK tokens | |
| inputs[selection] = 103 | |
| return inputs | |
| def read_image_and_extract_text(image): | |
| original_image = Image.open(image).convert("RGB") | |
| return apply_ocr(image) | |
| def create_features( | |
| image, | |
| tokenizer, | |
| add_batch_dim=False, | |
| target_size=(500,384), # This was the resolution used by the authors | |
| max_seq_length=512, | |
| path_to_save=None, | |
| save_to_disk=False, | |
| apply_mask_for_mlm=False, | |
| extras_for_debugging=False, | |
| use_ocr = False, | |
| bounding_box = None, | |
| words = None | |
| ): | |
| # step 1: read original image and extract OCR entries | |
| original_image = Image.open(image).convert("RGB") | |
| if (use_ocr == False) and (bounding_box == None or words == None): | |
| raise Exception('Please provide the bounding box and words or pass the argument "use_ocr" = True') | |
| if use_ocr == True: | |
| entries = apply_ocr(image) | |
| bounding_box = entries["bbox"] | |
| words = entries["words"] | |
| CLS_TOKEN_BOX = [0, 0, *original_image.size] # Can be variable, but as per the paper, they have mentioned that it covers the whole image | |
| # step 2: resize image | |
| resized_image = original_image.resize(target_size) | |
| # step 3: normalize image to a grid of 1000 x 1000 (to avoid the problem of differently sized images) | |
| width, height = original_image.size | |
| normalized_word_boxes = [ | |
| normalize_box(bbox, width, height, GRID_SIZE) for bbox in bounding_box | |
| ] | |
| assert len(words) == len(normalized_word_boxes), "Length of words != Length of normalized words" | |
| # step 4: tokenize words and get their bounding boxes (one word may split into multiple tokens) | |
| encoding = tokenizer(words, | |
| padding="max_length", | |
| max_length=max_seq_length, | |
| is_split_into_words=True, | |
| truncation=True, | |
| add_special_tokens=False) | |
| unnormalized_token_boxes = get_tokens_with_boxes(bounding_box, | |
| PAD_TOKEN_BOX, | |
| encoding.word_ids()) | |
| # step 5: add special tokens and truncate seq. to maximum length | |
| unnormalized_token_boxes = [CLS_TOKEN_BOX] + unnormalized_token_boxes[:-1] | |
| # add CLS token manually to avoid autom. addition of SEP too (as in the paper) | |
| encoding["input_ids"] = [tokenizer.cls_token_id] + encoding["input_ids"][:-1] | |
| # step 6: Add bounding boxes to the encoding dict | |
| encoding["unnormalized_token_boxes"] = unnormalized_token_boxes | |
| # step 7: apply mask for the sake of pre-training | |
| if apply_mask_for_mlm: | |
| encoding["mlm_labels"] = encoding["input_ids"] | |
| encoding["input_ids"] = apply_mask(encoding["input_ids"], tokenizer) | |
| assert len(encoding["mlm_labels"]) == max_seq_length, "Length of mlm_labels != Length of max_seq_length" | |
| assert len(encoding["input_ids"]) == max_seq_length, "Length of input_ids != Length of max_seq_length" | |
| assert len(encoding["attention_mask"]) == max_seq_length, "Length of attention mask != Length of max_seq_length" | |
| assert len(encoding["token_type_ids"]) == max_seq_length, "Length of token type ids != Length of max_seq_length" | |
| # step 8: normalize the image | |
| encoding["resized_scaled_img"] = ToTensor()(resized_image) | |
| # step 9: apply mask for the sake of pre-training | |
| if apply_mask_for_mlm: | |
| encoding["mlm_labels"] = encoding["input_ids"] | |
| encoding["input_ids"] = apply_mask(encoding["input_ids"], tokenizer) | |
| # step 10: rescale and align the bounding boxes to match the resized image size (typically 224x224) | |
| resized_and_aligned_bboxes = [] | |
| for bbox in unnormalized_token_boxes: | |
| # performing the normalization of the bounding box | |
| resized_and_aligned_bboxes.append(resize_align_bbox(tuple(bbox), *original_image.size, *target_size)) | |
| encoding["resized_and_aligned_bounding_boxes"] = resized_and_aligned_bboxes | |
| # step 11: add the relative distances in the normalized grid | |
| bboxes_centroids = get_centroid(resized_and_aligned_bboxes) | |
| pad_token_start_index = get_pad_token_id_start_index(words, encoding, tokenizer) | |
| a_rel_x, a_rel_y = get_relative_distance(resized_and_aligned_bboxes, bboxes_centroids, pad_token_start_index) | |
| # step 12: convert all to tensors | |
| for k, v in encoding.items(): | |
| encoding[k] = torch.as_tensor(encoding[k]) | |
| encoding.update({ | |
| "x_features": torch.as_tensor(a_rel_x, dtype=torch.int32), | |
| "y_features": torch.as_tensor(a_rel_y, dtype=torch.int32), | |
| }) | |
| # step 13: add tokens for debugging | |
| if extras_for_debugging: | |
| input_ids = encoding["mlm_labels"] if apply_mask_for_mlm else encoding["input_ids"] | |
| encoding["tokens_without_padding"] = tokenizer.convert_ids_to_tokens(input_ids) | |
| encoding["words"] = words | |
| # step 14: add extra dim for batch | |
| if add_batch_dim: | |
| encoding["x_features"].unsqueeze_(0) | |
| encoding["y_features"].unsqueeze_(0) | |
| encoding["input_ids"].unsqueeze_(0) | |
| encoding["resized_scaled_img"].unsqueeze_(0) | |
| # step 15: save to disk | |
| if save_to_disk: | |
| os.makedirs(path_to_save, exist_ok=True) | |
| image_name = os.path.basename(image) | |
| with open(f"{path_to_save}{image_name}.pickle", "wb") as f: | |
| pickle.dump(encoding, f) | |
| # step 16: keys to keep, resized_and_aligned_bounding_boxes have been added for the purpose to test if the bounding boxes are drawn correctly or not, it maybe removed | |
| keys = ['resized_scaled_img', 'x_features','y_features','input_ids','resized_and_aligned_bounding_boxes'] | |
| if apply_mask_for_mlm: | |
| keys.append('mlm_labels') | |
| final_encoding = {k:encoding[k] for k in keys} | |
| del encoding | |
| return final_encoding | |