i-darrshan's picture
Update app.py
dfd4a9f verified
import gradio as gr
from transformers import AutoTokenizer
from huggingface_hub import HfApi, login
api = HfApi()
# Define a function to calculate tokens
def count_tokens(llm_name, input_text, api_token):
try:
# Login using the API token if provided
if api_token:
login(api_token)
# Load the tokenizer for the selected transformer-based model
tokenizer = AutoTokenizer.from_pretrained(llm_name)
tokens = tokenizer.encode(input_text)
return f"Number of tokens: {len(tokens)}"
except Exception as e:
return f"Error: {str(e)}"
# Fetch model details including metadata (like tags)
models = list(api.list_models(task="text-generation"))
# Filter models that have the 'text-generation-inference' tag and 'text-generation' pipeline_tag
filtered_models = []
for model in models:
model_info = api.model_info(model.modelId)
if 'text-generation-inference' in model_info.tags and model_info.pipeline_tag == 'text-generation':
filtered_models.append(model.modelId)
# Define custom CSS for a bluish theme and cursor pointer
custom_css = """
.gr-dropdown {
cursor: pointer;
}
"""
# Set the default model to the first filtered model, or "gpt2" if there are no filtered models
default_model = filtered_models[0] if filtered_models else "gpt2"
# Create the Gradio interface
with gr.Blocks(css=custom_css) as demo:
gr.HTML("<h1 style='text-align: center; color: #0078d7;'>Token Counter for Transformer-Based Models</h1>")
gr.Markdown(
"This app allows you to count the number of tokens in the input text "
"using selected transformer-based models from Hugging Face."
)
with gr.Row():
llm_dropdown = gr.Dropdown(choices=filtered_models, label="Select Transformer Model", value=default_model)
with gr.Row():
input_text = gr.Textbox(label="Enter your text")
output = gr.Textbox(label="Token Count", interactive=False)
with gr.Row():
api_token_input = gr.Textbox(label="Enter Hugging Face API Token (if needed)", type="password", placeholder="Your API Token", interactive=True)
with gr.Row():
submit_btn = gr.Button("Calculate Tokens")
submit_btn.click(count_tokens, inputs=[llm_dropdown, input_text, api_token_input], outputs=output)
# Launch the app
demo.launch(share=True, debug=True)