Spaces:
Paused
Paused
| model_name = "LLaMA" | |
| cmd_to_install = "`pip install -r request_llms/requirements_chatglm.txt`" | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
| from toolbox import update_ui, get_conf, ProxyNetworkActivate | |
| from multiprocessing import Process, Pipe | |
| from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns | |
| from threading import Thread | |
| # ------------------------------------------------------------------------------------------------------------------------ | |
| # ππ» Local Model | |
| # ------------------------------------------------------------------------------------------------------------------------ | |
| class GetLlamaHandle(LocalLLMHandle): | |
| def load_model_info(self): | |
| # πββοΈπββοΈπββοΈ εθΏη¨ζ§θ‘ | |
| self.model_name = model_name | |
| self.cmd_to_install = cmd_to_install | |
| def load_model_and_tokenizer(self): | |
| # πββοΈπββοΈπββοΈ εθΏη¨ζ§θ‘ | |
| import os, glob | |
| import os | |
| import platform | |
| huggingface_token, device = get_conf('HUGGINGFACE_ACCESS_TOKEN', 'LOCAL_MODEL_DEVICE') | |
| assert len(huggingface_token) != 0, "沑ζε‘«ε HUGGINGFACE_ACCESS_TOKEN" | |
| with open(os.path.expanduser('~/.cache/huggingface/token'), 'w') as f: | |
| f.write(huggingface_token) | |
| model_id = 'meta-llama/Llama-2-7b-chat-hf' | |
| with ProxyNetworkActivate('Download_LLM'): | |
| self._tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=huggingface_token) | |
| # use fp16 | |
| model = AutoModelForCausalLM.from_pretrained(model_id, use_auth_token=huggingface_token).eval() | |
| if device.startswith('cuda'): model = model.half().to(device) | |
| self._model = model | |
| return self._model, self._tokenizer | |
| def llm_stream_generator(self, **kwargs): | |
| # πββοΈπββοΈπββοΈ εθΏη¨ζ§θ‘ | |
| def adaptor(kwargs): | |
| query = kwargs['query'] | |
| max_length = kwargs['max_length'] | |
| top_p = kwargs['top_p'] | |
| temperature = kwargs['temperature'] | |
| history = kwargs['history'] | |
| console_slience = kwargs.get('console_slience', True) | |
| return query, max_length, top_p, temperature, history, console_slience | |
| def convert_messages_to_prompt(query, history): | |
| prompt = "" | |
| for a, b in history: | |
| prompt += f"\n[INST]{a}[/INST]" | |
| prompt += "\n{b}" + b | |
| prompt += f"\n[INST]{query}[/INST]" | |
| return prompt | |
| query, max_length, top_p, temperature, history, console_slience = adaptor(kwargs) | |
| prompt = convert_messages_to_prompt(query, history) | |
| # =-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=- | |
| # code from transformers.llama | |
| streamer = TextIteratorStreamer(self._tokenizer) | |
| # Run the generation in a separate thread, so that we can fetch the generated text in a non-blocking way. | |
| inputs = self._tokenizer([prompt], return_tensors="pt") | |
| prompt_tk_back = self._tokenizer.batch_decode(inputs['input_ids'])[0] | |
| generation_kwargs = dict(inputs.to(self._model.device), streamer=streamer, max_new_tokens=max_length) | |
| thread = Thread(target=self._model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| generated_text = "" | |
| for new_text in streamer: | |
| generated_text += new_text | |
| if not console_slience: print(new_text, end='') | |
| yield generated_text.lstrip(prompt_tk_back).rstrip("</s>") | |
| if not console_slience: print() | |
| # =-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=- | |
| def try_to_import_special_deps(self, **kwargs): | |
| # import something that will raise error if the user does not install requirement_*.txt | |
| # πββοΈπββοΈπββοΈ δΈ»θΏη¨ζ§θ‘ | |
| import importlib | |
| importlib.import_module('transformers') | |
| # ------------------------------------------------------------------------------------------------------------------------ | |
| # ππ» GPT-Academic Interface | |
| # ------------------------------------------------------------------------------------------------------------------------ | |
| predict_no_ui_long_connection, predict = get_local_llm_predict_fns(GetLlamaHandle, model_name) |