Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python | |
| from __future__ import annotations | |
| import argparse | |
| import os | |
| import pathlib | |
| import subprocess | |
| import tarfile | |
| if os.getenv('SYSTEM') == 'spaces': | |
| import mim | |
| mim.uninstall('mmcv-full', confirm_yes=True) | |
| mim.install('mmcv-full==1.5.2', is_yes=True) | |
| subprocess.call('pip uninstall -y opencv-python'.split()) | |
| subprocess.call('pip uninstall -y opencv-python-headless'.split()) | |
| subprocess.call('pip install opencv-python-headless'.split()) | |
| import cv2 | |
| import gradio as gr | |
| import numpy as np | |
| from model import Model | |
| DEFAULT_MODEL_TYPE = 'detection' | |
| DEFAULT_MODEL_NAMES = { | |
| 'detection': 'YOLOX-l', | |
| 'instance_segmentation': 'QueryInst (R-50-FPN)', | |
| 'panoptic_segmentation': 'MaskFormer (R-50)', | |
| } | |
| DEFAULT_MODEL_NAME = DEFAULT_MODEL_NAMES[DEFAULT_MODEL_TYPE] | |
| def parse_args() -> argparse.Namespace: | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('--device', type=str, default='cpu') | |
| parser.add_argument('--theme', type=str) | |
| parser.add_argument('--share', action='store_true') | |
| parser.add_argument('--port', type=int) | |
| parser.add_argument('--disable-queue', | |
| dest='enable_queue', | |
| action='store_false') | |
| return parser.parse_args() | |
| def extract_tar() -> None: | |
| if pathlib.Path('mmdet_configs/configs').exists(): | |
| return | |
| with tarfile.open('mmdet_configs/configs.tar') as f: | |
| f.extractall('mmdet_configs') | |
| def update_input_image(image: np.ndarray) -> dict: | |
| if image is None: | |
| return gr.Image.update(value=None) | |
| scale = 1500 / max(image.shape[:2]) | |
| if scale < 1: | |
| image = cv2.resize(image, None, fx=scale, fy=scale) | |
| return gr.Image.update(value=image) | |
| def update_model_name(model_type: str) -> dict: | |
| model_dict = getattr(Model, f'{model_type.upper()}_MODEL_DICT') | |
| model_names = list(model_dict.keys()) | |
| model_name = DEFAULT_MODEL_NAMES[model_type] | |
| return gr.Dropdown.update(choices=model_names, value=model_name) | |
| def update_visualization_score_threshold(model_type: str) -> dict: | |
| return gr.Slider.update(visible=model_type != 'panoptic_segmentation') | |
| def update_redraw_button(model_type: str) -> dict: | |
| return gr.Button.update(visible=model_type != 'panoptic_segmentation') | |
| def set_example_image(example: list) -> dict: | |
| return gr.Image.update(value=example[0]) | |
| def main(): | |
| args = parse_args() | |
| extract_tar() | |
| model = Model(DEFAULT_MODEL_NAME, args.device) | |
| css = ''' | |
| h1#title { | |
| text-align: center; | |
| } | |
| img#overview { | |
| max-width: 1000px; | |
| max-height: 600px; | |
| } | |
| ''' | |
| with gr.Blocks(theme=args.theme, css=css) as demo: | |
| gr.Markdown('''<h1 id="title">MMDetection</h1> | |
| This is an unofficial demo for [https://github.com/open-mmlab/mmdetection](https://github.com/open-mmlab/mmdetection). | |
| <center><img id="overview" alt="overview" src="https://user-images.githubusercontent.com/12907710/137271636-56ba1cd2-b110-4812-8221-b4c120320aa9.png" /></center> | |
| ''') | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| input_image = gr.Image(label='Input Image', type='numpy') | |
| with gr.Group(): | |
| with gr.Row(): | |
| model_type = gr.Radio(list(DEFAULT_MODEL_NAMES.keys()), | |
| value=DEFAULT_MODEL_TYPE, | |
| label='Model Type') | |
| with gr.Row(): | |
| model_name = gr.Dropdown(list( | |
| model.DETECTION_MODEL_DICT.keys()), | |
| value=DEFAULT_MODEL_NAME, | |
| label='Model') | |
| with gr.Row(): | |
| run_button = gr.Button(value='Run') | |
| prediction_results = gr.Variable() | |
| with gr.Column(): | |
| with gr.Row(): | |
| visualization = gr.Image(label='Result', type='numpy') | |
| with gr.Row(): | |
| visualization_score_threshold = gr.Slider( | |
| 0, | |
| 1, | |
| step=0.05, | |
| value=0.3, | |
| label='Visualization Score Threshold') | |
| with gr.Row(): | |
| redraw_button = gr.Button(value='Redraw') | |
| with gr.Row(): | |
| paths = sorted(pathlib.Path('images').rglob('*.jpg')) | |
| example_images = gr.Dataset(components=[input_image], | |
| samples=[[path.as_posix()] | |
| for path in paths]) | |
| gr.Markdown( | |
| '<center><img src="https://visitor-badge.glitch.me/badge?page_id=hysts.mmdetection" alt="visitor badge"/></center>' | |
| ) | |
| input_image.change(fn=update_input_image, | |
| inputs=[input_image], | |
| outputs=[input_image]) | |
| model_type.change(fn=update_model_name, | |
| inputs=[model_type], | |
| outputs=[model_name]) | |
| model_type.change(fn=update_visualization_score_threshold, | |
| inputs=[model_type], | |
| outputs=[visualization_score_threshold]) | |
| model_type.change(fn=update_redraw_button, | |
| inputs=[model_type], | |
| outputs=[redraw_button]) | |
| model_name.change(fn=model.set_model, | |
| inputs=[model_name], | |
| outputs=None) | |
| run_button.click(fn=model.detect_and_visualize, | |
| inputs=[ | |
| input_image, | |
| visualization_score_threshold, | |
| ], | |
| outputs=[ | |
| prediction_results, | |
| visualization, | |
| ]) | |
| redraw_button.click(fn=model.visualize_detection_results, | |
| inputs=[ | |
| input_image, | |
| prediction_results, | |
| visualization_score_threshold, | |
| ], | |
| outputs=[visualization]) | |
| example_images.click(fn=set_example_image, | |
| inputs=[example_images], | |
| outputs=[input_image]) | |
| demo.launch( | |
| enable_queue=args.enable_queue, | |
| server_port=args.port, | |
| share=args.share, | |
| ) | |
| if __name__ == '__main__': | |
| main() | |