Spaces:
Running
Running
Update
Browse files
README.md
CHANGED
|
@@ -4,7 +4,7 @@ emoji: 🐠
|
|
| 4 |
colorFrom: green
|
| 5 |
colorTo: blue
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 3.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
---
|
|
|
|
| 4 |
colorFrom: green
|
| 5 |
colorTo: blue
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 3.34.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
---
|
app.py
CHANGED
|
@@ -15,13 +15,9 @@ import PIL.Image
|
|
| 15 |
import torch
|
| 16 |
import torchvision.transforms as T
|
| 17 |
|
| 18 |
-
|
| 19 |
-
DESCRIPTION = 'This is an unofficial demo for https://github.com/RF5/danbooru-pretrained.'
|
| 20 |
|
| 21 |
-
|
| 22 |
-
MODEL_REPO = 'hysts/danbooru-pretrained'
|
| 23 |
-
MODEL_FILENAME = 'resnet50-13306192.pth'
|
| 24 |
-
LABEL_FILENAME = 'class_names_6000.json'
|
| 25 |
|
| 26 |
|
| 27 |
def load_sample_image_paths() -> list[pathlib.Path]:
|
|
@@ -30,17 +26,14 @@ def load_sample_image_paths() -> list[pathlib.Path]:
|
|
| 30 |
dataset_repo = 'hysts/sample-images-TADNE'
|
| 31 |
path = huggingface_hub.hf_hub_download(dataset_repo,
|
| 32 |
'images.tar.gz',
|
| 33 |
-
repo_type='dataset'
|
| 34 |
-
use_auth_token=HF_TOKEN)
|
| 35 |
with tarfile.open(path) as f:
|
| 36 |
f.extractall()
|
| 37 |
return sorted(image_dir.glob('*'))
|
| 38 |
|
| 39 |
|
| 40 |
def load_model(device: torch.device) -> torch.nn.Module:
|
| 41 |
-
path = huggingface_hub.hf_hub_download(MODEL_REPO,
|
| 42 |
-
MODEL_FILENAME,
|
| 43 |
-
use_auth_token=HF_TOKEN)
|
| 44 |
state_dict = torch.load(path)
|
| 45 |
model = torch.hub.load('RF5/danbooru-pretrained',
|
| 46 |
'resnet50',
|
|
@@ -52,9 +45,7 @@ def load_model(device: torch.device) -> torch.nn.Module:
|
|
| 52 |
|
| 53 |
|
| 54 |
def load_labels() -> list[str]:
|
| 55 |
-
path = huggingface_hub.hf_hub_download(MODEL_REPO,
|
| 56 |
-
LABEL_FILENAME,
|
| 57 |
-
use_auth_token=HF_TOKEN)
|
| 58 |
with open(path) as f:
|
| 59 |
labels = json.load(f)
|
| 60 |
return labels
|
|
@@ -91,24 +82,31 @@ transform = T.Compose([
|
|
| 91 |
T.Normalize(mean=[0.7137, 0.6628, 0.6519], std=[0.2970, 0.3017, 0.2979]),
|
| 92 |
])
|
| 93 |
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
gr.
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
gr.
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
import torch
|
| 16 |
import torchvision.transforms as T
|
| 17 |
|
| 18 |
+
DESCRIPTION = '# [RF5/danbooru-pretrained](https://github.com/RF5/danbooru-pretrained)'
|
|
|
|
| 19 |
|
| 20 |
+
MODEL_REPO = 'public-data/danbooru-pretrained'
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
|
| 23 |
def load_sample_image_paths() -> list[pathlib.Path]:
|
|
|
|
| 26 |
dataset_repo = 'hysts/sample-images-TADNE'
|
| 27 |
path = huggingface_hub.hf_hub_download(dataset_repo,
|
| 28 |
'images.tar.gz',
|
| 29 |
+
repo_type='dataset')
|
|
|
|
| 30 |
with tarfile.open(path) as f:
|
| 31 |
f.extractall()
|
| 32 |
return sorted(image_dir.glob('*'))
|
| 33 |
|
| 34 |
|
| 35 |
def load_model(device: torch.device) -> torch.nn.Module:
|
| 36 |
+
path = huggingface_hub.hf_hub_download(MODEL_REPO, 'resnet50-13306192.pth')
|
|
|
|
|
|
|
| 37 |
state_dict = torch.load(path)
|
| 38 |
model = torch.hub.load('RF5/danbooru-pretrained',
|
| 39 |
'resnet50',
|
|
|
|
| 45 |
|
| 46 |
|
| 47 |
def load_labels() -> list[str]:
|
| 48 |
+
path = huggingface_hub.hf_hub_download(MODEL_REPO, 'class_names_6000.json')
|
|
|
|
|
|
|
| 49 |
with open(path) as f:
|
| 50 |
labels = json.load(f)
|
| 51 |
return labels
|
|
|
|
| 82 |
T.Normalize(mean=[0.7137, 0.6628, 0.6519], std=[0.2970, 0.3017, 0.2979]),
|
| 83 |
])
|
| 84 |
|
| 85 |
+
fn = functools.partial(predict,
|
| 86 |
+
transform=transform,
|
| 87 |
+
device=device,
|
| 88 |
+
model=model,
|
| 89 |
+
labels=labels)
|
| 90 |
+
|
| 91 |
+
with gr.Blocks(css='style.css') as demo:
|
| 92 |
+
gr.Markdown(DESCRIPTION)
|
| 93 |
+
with gr.Row():
|
| 94 |
+
with gr.Column():
|
| 95 |
+
image = gr.Image(label='Input', type='pil')
|
| 96 |
+
threshold = gr.Slider(label='Score Threshold',
|
| 97 |
+
minimum=0,
|
| 98 |
+
maximum=1,
|
| 99 |
+
step=0.05,
|
| 100 |
+
value=0.4)
|
| 101 |
+
run_button = gr.Button('Run')
|
| 102 |
+
with gr.Column():
|
| 103 |
+
result = gr.Label(label='Output')
|
| 104 |
+
|
| 105 |
+
inputs = [image, threshold]
|
| 106 |
+
gr.Examples(examples=examples,
|
| 107 |
+
inputs=inputs,
|
| 108 |
+
outputs=result,
|
| 109 |
+
fn=fn,
|
| 110 |
+
cache_examples=os.getenv('CACHE_EXAMPLES') == '1')
|
| 111 |
+
run_button.click(fn=fn, inputs=inputs, outputs=result, api_name='predict')
|
| 112 |
+
demo.queue(max_size=15).launch()
|
style.css
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
h1 {
|
| 2 |
+
text-align: center;
|
| 3 |
+
}
|