Spaces:
Running
Running
| # This file is adapted from gradio_*.py in https://github.com/lllyasviel/ControlNet/tree/f4748e3630d8141d7765e2bd9b1e348f47847707 | |
| # The original license file is LICENSE.ControlNet in this repo. | |
| from __future__ import annotations | |
| import pathlib | |
| import random | |
| import shlex | |
| import subprocess | |
| import sys | |
| import cv2 | |
| import einops | |
| import numpy as np | |
| import torch | |
| from pytorch_lightning import seed_everything | |
| sys.path.append('ControlNet') | |
| import config | |
| from annotator.canny import apply_canny | |
| from annotator.hed import apply_hed, nms | |
| from annotator.midas import apply_midas | |
| from annotator.mlsd import apply_mlsd | |
| from annotator.openpose import apply_openpose | |
| from annotator.uniformer import apply_uniformer | |
| from annotator.util import HWC3, resize_image | |
| from cldm.model import create_model, load_state_dict | |
| from ldm.models.diffusion.ddim import DDIMSampler | |
| from share import * | |
| ORIGINAL_MODEL_NAMES = { | |
| 'canny': 'control_sd15_canny.pth', | |
| 'hough': 'control_sd15_mlsd.pth', | |
| 'hed': 'control_sd15_hed.pth', | |
| 'scribble': 'control_sd15_scribble.pth', | |
| 'pose': 'control_sd15_openpose.pth', | |
| 'seg': 'control_sd15_seg.pth', | |
| 'depth': 'control_sd15_depth.pth', | |
| 'normal': 'control_sd15_normal.pth', | |
| } | |
| ORIGINAL_WEIGHT_ROOT = 'https://huggingface.co/lllyasviel/ControlNet/resolve/main/models/' | |
| LIGHTWEIGHT_MODEL_NAMES = { | |
| 'canny': 'control_canny-fp16.safetensors', | |
| 'hough': 'control_mlsd-fp16.safetensors', | |
| 'hed': 'control_hed-fp16.safetensors', | |
| 'scribble': 'control_scribble-fp16.safetensors', | |
| 'pose': 'control_openpose-fp16.safetensors', | |
| 'seg': 'control_seg-fp16.safetensors', | |
| 'depth': 'control_depth-fp16.safetensors', | |
| 'normal': 'control_normal-fp16.safetensors', | |
| } | |
| LIGHTWEIGHT_WEIGHT_ROOT = 'https://huggingface.co/webui/ControlNet-modules-safetensors/resolve/main/' | |
| class Model: | |
| def __init__(self, | |
| model_config_path: str = 'ControlNet/models/cldm_v15.yaml', | |
| model_dir: str = 'models', | |
| use_lightweight: bool = True): | |
| self.device = torch.device( | |
| 'cuda:0' if torch.cuda.is_available() else 'cpu') | |
| self.model = create_model(model_config_path).to(self.device) | |
| self.ddim_sampler = DDIMSampler(self.model) | |
| self.task_name = '' | |
| self.model_dir = pathlib.Path(model_dir) | |
| self.model_dir.mkdir(exist_ok=True, parents=True) | |
| self.use_lightweight = use_lightweight | |
| if use_lightweight: | |
| self.model_names = LIGHTWEIGHT_MODEL_NAMES | |
| self.weight_root = LIGHTWEIGHT_WEIGHT_ROOT | |
| base_model_url = 'https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.safetensors' | |
| self.load_base_model(base_model_url) | |
| else: | |
| self.model_names = ORIGINAL_MODEL_NAMES | |
| self.weight_root = ORIGINAL_WEIGHT_ROOT | |
| self.download_models() | |
| def download_base_model(self, model_url: str) -> pathlib.Path: | |
| model_name = model_url.split('/')[-1] | |
| out_path = self.model_dir / model_name | |
| if not out_path.exists(): | |
| subprocess.run(shlex.split(f'wget {model_url} -O {out_path}')) | |
| return out_path | |
| def load_base_model(self, model_url: str) -> None: | |
| model_path = self.download_base_model(model_url) | |
| self.model.load_state_dict(load_state_dict(model_path, | |
| location=self.device.type), | |
| strict=False) | |
| def load_weight(self, task_name: str) -> None: | |
| if task_name == self.task_name: | |
| return | |
| weight_path = self.get_weight_path(task_name) | |
| if not self.use_lightweight: | |
| self.model.load_state_dict( | |
| load_state_dict(weight_path, location=self.device)) | |
| else: | |
| self.model.control_model.load_state_dict( | |
| load_state_dict(weight_path, location=self.device.type)) | |
| self.task_name = task_name | |
| def get_weight_path(self, task_name: str) -> str: | |
| if 'scribble' in task_name: | |
| task_name = 'scribble' | |
| return f'{self.model_dir}/{self.model_names[task_name]}' | |
| def download_models(self) -> None: | |
| self.model_dir.mkdir(exist_ok=True, parents=True) | |
| for name in self.model_names.values(): | |
| out_path = self.model_dir / name | |
| if out_path.exists(): | |
| continue | |
| subprocess.run( | |
| shlex.split(f'wget {self.weight_root}{name} -O {out_path}')) | |
| def process_canny(self, input_image, prompt, a_prompt, n_prompt, | |
| num_samples, image_resolution, ddim_steps, scale, seed, | |
| eta, low_threshold, high_threshold): | |
| self.load_weight('canny') | |
| img = resize_image(HWC3(input_image), image_resolution) | |
| H, W, C = img.shape | |
| detected_map = apply_canny(img, low_threshold, high_threshold) | |
| detected_map = HWC3(detected_map) | |
| control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 | |
| control = torch.stack([control for _ in range(num_samples)], dim=0) | |
| control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
| if seed == -1: | |
| seed = random.randint(0, 65535) | |
| seed_everything(seed) | |
| if config.save_memory: | |
| self.model.low_vram_shift(is_diffusing=False) | |
| cond = { | |
| 'c_concat': [control], | |
| 'c_crossattn': [ | |
| self.model.get_learned_conditioning( | |
| [prompt + ', ' + a_prompt] * num_samples) | |
| ] | |
| } | |
| un_cond = { | |
| 'c_concat': [control], | |
| 'c_crossattn': | |
| [self.model.get_learned_conditioning([n_prompt] * num_samples)] | |
| } | |
| shape = (4, H // 8, W // 8) | |
| if config.save_memory: | |
| self.model.low_vram_shift(is_diffusing=True) | |
| samples, intermediates = self.ddim_sampler.sample( | |
| ddim_steps, | |
| num_samples, | |
| shape, | |
| cond, | |
| verbose=False, | |
| eta=eta, | |
| unconditional_guidance_scale=scale, | |
| unconditional_conditioning=un_cond) | |
| if config.save_memory: | |
| self.model.low_vram_shift(is_diffusing=False) | |
| x_samples = self.model.decode_first_stage(samples) | |
| x_samples = ( | |
| einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + | |
| 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) | |
| results = [x_samples[i] for i in range(num_samples)] | |
| return [255 - detected_map] + results | |
| def process_hough(self, input_image, prompt, a_prompt, n_prompt, | |
| num_samples, image_resolution, detect_resolution, | |
| ddim_steps, scale, seed, eta, value_threshold, | |
| distance_threshold): | |
| self.load_weight('hough') | |
| input_image = HWC3(input_image) | |
| detected_map = apply_mlsd(resize_image(input_image, detect_resolution), | |
| value_threshold, distance_threshold) | |
| detected_map = HWC3(detected_map) | |
| img = resize_image(input_image, image_resolution) | |
| H, W, C = img.shape | |
| detected_map = cv2.resize(detected_map, (W, H), | |
| interpolation=cv2.INTER_NEAREST) | |
| control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 | |
| control = torch.stack([control for _ in range(num_samples)], dim=0) | |
| control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
| if seed == -1: | |
| seed = random.randint(0, 65535) | |
| seed_everything(seed) | |
| if config.save_memory: | |
| self.model.low_vram_shift(is_diffusing=False) | |
| cond = { | |
| 'c_concat': [control], | |
| 'c_crossattn': [ | |
| self.model.get_learned_conditioning( | |
| [prompt + ', ' + a_prompt] * num_samples) | |
| ] | |
| } | |
| un_cond = { | |
| 'c_concat': [control], | |
| 'c_crossattn': | |
| [self.model.get_learned_conditioning([n_prompt] * num_samples)] | |
| } | |
| shape = (4, H // 8, W // 8) | |
| if config.save_memory: | |
| self.model.low_vram_shift(is_diffusing=True) | |
| samples, intermediates = self.ddim_sampler.sample( | |
| ddim_steps, | |
| num_samples, | |
| shape, | |
| cond, | |
| verbose=False, | |
| eta=eta, | |
| unconditional_guidance_scale=scale, | |
| unconditional_conditioning=un_cond) | |
| if config.save_memory: | |
| self.model.low_vram_shift(is_diffusing=False) | |
| x_samples = self.model.decode_first_stage(samples) | |
| x_samples = ( | |
| einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + | |
| 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) | |
| results = [x_samples[i] for i in range(num_samples)] | |
| return [ | |
| 255 - cv2.dilate(detected_map, | |
| np.ones(shape=(3, 3), dtype=np.uint8), | |
| iterations=1) | |
| ] + results | |
| def process_hed(self, input_image, prompt, a_prompt, n_prompt, num_samples, | |
| image_resolution, detect_resolution, ddim_steps, scale, | |
| seed, eta): | |
| self.load_weight('hed') | |
| input_image = HWC3(input_image) | |
| detected_map = apply_hed(resize_image(input_image, detect_resolution)) | |
| detected_map = HWC3(detected_map) | |
| img = resize_image(input_image, image_resolution) | |
| H, W, C = img.shape | |
| detected_map = cv2.resize(detected_map, (W, H), | |
| interpolation=cv2.INTER_LINEAR) | |
| control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 | |
| control = torch.stack([control for _ in range(num_samples)], dim=0) | |
| control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
| if seed == -1: | |
| seed = random.randint(0, 65535) | |
| seed_everything(seed) | |
| if config.save_memory: | |
| self.model.low_vram_shift(is_diffusing=False) | |
| cond = { | |
| 'c_concat': [control], | |
| 'c_crossattn': [ | |
| self.model.get_learned_conditioning( | |
| [prompt + ', ' + a_prompt] * num_samples) | |
| ] | |
| } | |
| un_cond = { | |
| 'c_concat': [control], | |
| 'c_crossattn': | |
| [self.model.get_learned_conditioning([n_prompt] * num_samples)] | |
| } | |
| shape = (4, H // 8, W // 8) | |
| if config.save_memory: | |
| self.model.low_vram_shift(is_diffusing=True) | |
| samples, intermediates = self.ddim_sampler.sample( | |
| ddim_steps, | |
| num_samples, | |
| shape, | |
| cond, | |
| verbose=False, | |
| eta=eta, | |
| unconditional_guidance_scale=scale, | |
| unconditional_conditioning=un_cond) | |
| if config.save_memory: | |
| self.model.low_vram_shift(is_diffusing=False) | |
| x_samples = self.model.decode_first_stage(samples) | |
| x_samples = ( | |
| einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + | |
| 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) | |
| results = [x_samples[i] for i in range(num_samples)] | |
| return [detected_map] + results | |
| def process_scribble(self, input_image, prompt, a_prompt, n_prompt, | |
| num_samples, image_resolution, ddim_steps, scale, | |
| seed, eta): | |
| self.load_weight('scribble') | |
| img = resize_image(HWC3(input_image), image_resolution) | |
| H, W, C = img.shape | |
| detected_map = np.zeros_like(img, dtype=np.uint8) | |
| detected_map[np.min(img, axis=2) < 127] = 255 | |
| control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 | |
| control = torch.stack([control for _ in range(num_samples)], dim=0) | |
| control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
| if seed == -1: | |
| seed = random.randint(0, 65535) | |
| seed_everything(seed) | |
| if config.save_memory: | |
| self.model.low_vram_shift(is_diffusing=False) | |
| cond = { | |
| 'c_concat': [control], | |
| 'c_crossattn': [ | |
| self.model.get_learned_conditioning( | |
| [prompt + ', ' + a_prompt] * num_samples) | |
| ] | |
| } | |
| un_cond = { | |
| 'c_concat': [control], | |
| 'c_crossattn': | |
| [self.model.get_learned_conditioning([n_prompt] * num_samples)] | |
| } | |
| shape = (4, H // 8, W // 8) | |
| if config.save_memory: | |
| self.model.low_vram_shift(is_diffusing=True) | |
| samples, intermediates = self.ddim_sampler.sample( | |
| ddim_steps, | |
| num_samples, | |
| shape, | |
| cond, | |
| verbose=False, | |
| eta=eta, | |
| unconditional_guidance_scale=scale, | |
| unconditional_conditioning=un_cond) | |
| if config.save_memory: | |
| self.model.low_vram_shift(is_diffusing=False) | |
| x_samples = self.model.decode_first_stage(samples) | |
| x_samples = ( | |
| einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + | |
| 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) | |
| results = [x_samples[i] for i in range(num_samples)] | |
| return [255 - detected_map] + results | |
| def process_scribble_interactive(self, input_image, prompt, a_prompt, | |
| n_prompt, num_samples, image_resolution, | |
| ddim_steps, scale, seed, eta): | |
| self.load_weight('scribble') | |
| img = resize_image(HWC3(input_image['mask'][:, :, 0]), | |
| image_resolution) | |
| H, W, C = img.shape | |
| detected_map = np.zeros_like(img, dtype=np.uint8) | |
| detected_map[np.min(img, axis=2) > 127] = 255 | |
| control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 | |
| control = torch.stack([control for _ in range(num_samples)], dim=0) | |
| control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
| if seed == -1: | |
| seed = random.randint(0, 65535) | |
| seed_everything(seed) | |
| if config.save_memory: | |
| self.model.low_vram_shift(is_diffusing=False) | |
| cond = { | |
| 'c_concat': [control], | |
| 'c_crossattn': [ | |
| self.model.get_learned_conditioning( | |
| [prompt + ', ' + a_prompt] * num_samples) | |
| ] | |
| } | |
| un_cond = { | |
| 'c_concat': [control], | |
| 'c_crossattn': | |
| [self.model.get_learned_conditioning([n_prompt] * num_samples)] | |
| } | |
| shape = (4, H // 8, W // 8) | |
| if config.save_memory: | |
| self.model.low_vram_shift(is_diffusing=True) | |
| samples, intermediates = self.ddim_sampler.sample( | |
| ddim_steps, | |
| num_samples, | |
| shape, | |
| cond, | |
| verbose=False, | |
| eta=eta, | |
| unconditional_guidance_scale=scale, | |
| unconditional_conditioning=un_cond) | |
| if config.save_memory: | |
| self.model.low_vram_shift(is_diffusing=False) | |
| x_samples = self.model.decode_first_stage(samples) | |
| x_samples = ( | |
| einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + | |
| 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) | |
| results = [x_samples[i] for i in range(num_samples)] | |
| return [255 - detected_map] + results | |
| def process_fake_scribble(self, input_image, prompt, a_prompt, n_prompt, | |
| num_samples, image_resolution, detect_resolution, | |
| ddim_steps, scale, seed, eta): | |
| self.load_weight('scribble') | |
| input_image = HWC3(input_image) | |
| detected_map = apply_hed(resize_image(input_image, detect_resolution)) | |
| detected_map = HWC3(detected_map) | |
| img = resize_image(input_image, image_resolution) | |
| H, W, C = img.shape | |
| detected_map = cv2.resize(detected_map, (W, H), | |
| interpolation=cv2.INTER_LINEAR) | |
| detected_map = nms(detected_map, 127, 3.0) | |
| detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0) | |
| detected_map[detected_map > 4] = 255 | |
| detected_map[detected_map < 255] = 0 | |
| control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 | |
| control = torch.stack([control for _ in range(num_samples)], dim=0) | |
| control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
| if seed == -1: | |
| seed = random.randint(0, 65535) | |
| seed_everything(seed) | |
| if config.save_memory: | |
| self.model.low_vram_shift(is_diffusing=False) | |
| cond = { | |
| 'c_concat': [control], | |
| 'c_crossattn': [ | |
| self.model.get_learned_conditioning( | |
| [prompt + ', ' + a_prompt] * num_samples) | |
| ] | |
| } | |
| un_cond = { | |
| 'c_concat': [control], | |
| 'c_crossattn': | |
| [self.model.get_learned_conditioning([n_prompt] * num_samples)] | |
| } | |
| shape = (4, H // 8, W // 8) | |
| if config.save_memory: | |
| self.model.low_vram_shift(is_diffusing=True) | |
| samples, intermediates = self.ddim_sampler.sample( | |
| ddim_steps, | |
| num_samples, | |
| shape, | |
| cond, | |
| verbose=False, | |
| eta=eta, | |
| unconditional_guidance_scale=scale, | |
| unconditional_conditioning=un_cond) | |
| if config.save_memory: | |
| self.model.low_vram_shift(is_diffusing=False) | |
| x_samples = self.model.decode_first_stage(samples) | |
| x_samples = ( | |
| einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + | |
| 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) | |
| results = [x_samples[i] for i in range(num_samples)] | |
| return [255 - detected_map] + results | |
| def process_pose(self, input_image, prompt, a_prompt, n_prompt, | |
| num_samples, image_resolution, detect_resolution, | |
| ddim_steps, scale, seed, eta): | |
| self.load_weight('pose') | |
| input_image = HWC3(input_image) | |
| detected_map, _ = apply_openpose( | |
| resize_image(input_image, detect_resolution)) | |
| detected_map = HWC3(detected_map) | |
| img = resize_image(input_image, image_resolution) | |
| H, W, C = img.shape | |
| detected_map = cv2.resize(detected_map, (W, H), | |
| interpolation=cv2.INTER_NEAREST) | |
| control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 | |
| control = torch.stack([control for _ in range(num_samples)], dim=0) | |
| control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
| if seed == -1: | |
| seed = random.randint(0, 65535) | |
| seed_everything(seed) | |
| if config.save_memory: | |
| self.model.low_vram_shift(is_diffusing=False) | |
| cond = { | |
| 'c_concat': [control], | |
| 'c_crossattn': [ | |
| self.model.get_learned_conditioning( | |
| [prompt + ', ' + a_prompt] * num_samples) | |
| ] | |
| } | |
| un_cond = { | |
| 'c_concat': [control], | |
| 'c_crossattn': | |
| [self.model.get_learned_conditioning([n_prompt] * num_samples)] | |
| } | |
| shape = (4, H // 8, W // 8) | |
| if config.save_memory: | |
| self.model.low_vram_shift(is_diffusing=True) | |
| samples, intermediates = self.ddim_sampler.sample( | |
| ddim_steps, | |
| num_samples, | |
| shape, | |
| cond, | |
| verbose=False, | |
| eta=eta, | |
| unconditional_guidance_scale=scale, | |
| unconditional_conditioning=un_cond) | |
| if config.save_memory: | |
| self.model.low_vram_shift(is_diffusing=False) | |
| x_samples = self.model.decode_first_stage(samples) | |
| x_samples = ( | |
| einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + | |
| 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) | |
| results = [x_samples[i] for i in range(num_samples)] | |
| return [detected_map] + results | |
| def process_seg(self, input_image, prompt, a_prompt, n_prompt, num_samples, | |
| image_resolution, detect_resolution, ddim_steps, scale, | |
| seed, eta): | |
| self.load_weight('seg') | |
| input_image = HWC3(input_image) | |
| detected_map = apply_uniformer( | |
| resize_image(input_image, detect_resolution)) | |
| img = resize_image(input_image, image_resolution) | |
| H, W, C = img.shape | |
| detected_map = cv2.resize(detected_map, (W, H), | |
| interpolation=cv2.INTER_NEAREST) | |
| control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 | |
| control = torch.stack([control for _ in range(num_samples)], dim=0) | |
| control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
| if seed == -1: | |
| seed = random.randint(0, 65535) | |
| seed_everything(seed) | |
| if config.save_memory: | |
| self.model.low_vram_shift(is_diffusing=False) | |
| cond = { | |
| 'c_concat': [control], | |
| 'c_crossattn': [ | |
| self.model.get_learned_conditioning( | |
| [prompt + ', ' + a_prompt] * num_samples) | |
| ] | |
| } | |
| un_cond = { | |
| 'c_concat': [control], | |
| 'c_crossattn': | |
| [self.model.get_learned_conditioning([n_prompt] * num_samples)] | |
| } | |
| shape = (4, H // 8, W // 8) | |
| if config.save_memory: | |
| self.model.low_vram_shift(is_diffusing=True) | |
| samples, intermediates = self.ddim_sampler.sample( | |
| ddim_steps, | |
| num_samples, | |
| shape, | |
| cond, | |
| verbose=False, | |
| eta=eta, | |
| unconditional_guidance_scale=scale, | |
| unconditional_conditioning=un_cond) | |
| if config.save_memory: | |
| self.model.low_vram_shift(is_diffusing=False) | |
| x_samples = self.model.decode_first_stage(samples) | |
| x_samples = ( | |
| einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + | |
| 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) | |
| results = [x_samples[i] for i in range(num_samples)] | |
| return [detected_map] + results | |
| def process_depth(self, input_image, prompt, a_prompt, n_prompt, | |
| num_samples, image_resolution, detect_resolution, | |
| ddim_steps, scale, seed, eta): | |
| self.load_weight('depth') | |
| input_image = HWC3(input_image) | |
| detected_map, _ = apply_midas( | |
| resize_image(input_image, detect_resolution)) | |
| detected_map = HWC3(detected_map) | |
| img = resize_image(input_image, image_resolution) | |
| H, W, C = img.shape | |
| detected_map = cv2.resize(detected_map, (W, H), | |
| interpolation=cv2.INTER_LINEAR) | |
| control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 | |
| control = torch.stack([control for _ in range(num_samples)], dim=0) | |
| control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
| if seed == -1: | |
| seed = random.randint(0, 65535) | |
| seed_everything(seed) | |
| if config.save_memory: | |
| self.model.low_vram_shift(is_diffusing=False) | |
| cond = { | |
| 'c_concat': [control], | |
| 'c_crossattn': [ | |
| self.model.get_learned_conditioning( | |
| [prompt + ', ' + a_prompt] * num_samples) | |
| ] | |
| } | |
| un_cond = { | |
| 'c_concat': [control], | |
| 'c_crossattn': | |
| [self.model.get_learned_conditioning([n_prompt] * num_samples)] | |
| } | |
| shape = (4, H // 8, W // 8) | |
| if config.save_memory: | |
| self.model.low_vram_shift(is_diffusing=True) | |
| samples, intermediates = self.ddim_sampler.sample( | |
| ddim_steps, | |
| num_samples, | |
| shape, | |
| cond, | |
| verbose=False, | |
| eta=eta, | |
| unconditional_guidance_scale=scale, | |
| unconditional_conditioning=un_cond) | |
| if config.save_memory: | |
| self.model.low_vram_shift(is_diffusing=False) | |
| x_samples = self.model.decode_first_stage(samples) | |
| x_samples = ( | |
| einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + | |
| 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) | |
| results = [x_samples[i] for i in range(num_samples)] | |
| return [detected_map] + results | |
| def process_normal(self, input_image, prompt, a_prompt, n_prompt, | |
| num_samples, image_resolution, detect_resolution, | |
| ddim_steps, scale, seed, eta, bg_threshold): | |
| self.load_weight('normal') | |
| input_image = HWC3(input_image) | |
| _, detected_map = apply_midas(resize_image(input_image, | |
| detect_resolution), | |
| bg_th=bg_threshold) | |
| detected_map = HWC3(detected_map) | |
| img = resize_image(input_image, image_resolution) | |
| H, W, C = img.shape | |
| detected_map = cv2.resize(detected_map, (W, H), | |
| interpolation=cv2.INTER_LINEAR) | |
| control = torch.from_numpy( | |
| detected_map[:, :, ::-1].copy()).float().cuda() / 255.0 | |
| control = torch.stack([control for _ in range(num_samples)], dim=0) | |
| control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
| if seed == -1: | |
| seed = random.randint(0, 65535) | |
| seed_everything(seed) | |
| if config.save_memory: | |
| self.model.low_vram_shift(is_diffusing=False) | |
| cond = { | |
| 'c_concat': [control], | |
| 'c_crossattn': [ | |
| self.model.get_learned_conditioning( | |
| [prompt + ', ' + a_prompt] * num_samples) | |
| ] | |
| } | |
| un_cond = { | |
| 'c_concat': [control], | |
| 'c_crossattn': | |
| [self.model.get_learned_conditioning([n_prompt] * num_samples)] | |
| } | |
| shape = (4, H // 8, W // 8) | |
| if config.save_memory: | |
| self.model.low_vram_shift(is_diffusing=True) | |
| samples, intermediates = self.ddim_sampler.sample( | |
| ddim_steps, | |
| num_samples, | |
| shape, | |
| cond, | |
| verbose=False, | |
| eta=eta, | |
| unconditional_guidance_scale=scale, | |
| unconditional_conditioning=un_cond) | |
| if config.save_memory: | |
| self.model.low_vram_shift(is_diffusing=False) | |
| x_samples = self.model.decode_first_stage(samples) | |
| x_samples = ( | |
| einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + | |
| 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) | |
| results = [x_samples[i] for i in range(num_samples)] | |
| return [detected_map] + results | |