Spaces:
Runtime error
Runtime error
Stop using cpu_offload
Browse files
model.py
CHANGED
|
@@ -2,6 +2,7 @@
|
|
| 2 |
# The original license file is LICENSE.ControlNet in this repo.
|
| 3 |
from __future__ import annotations
|
| 4 |
|
|
|
|
| 5 |
import pathlib
|
| 6 |
import sys
|
| 7 |
|
|
@@ -24,7 +25,6 @@ from annotator.mlsd import apply_mlsd
|
|
| 24 |
from annotator.openpose import apply_openpose
|
| 25 |
from annotator.uniformer import apply_uniformer
|
| 26 |
from annotator.util import HWC3, resize_image
|
| 27 |
-
from share import *
|
| 28 |
|
| 29 |
CONTROLNET_MODEL_IDS = {
|
| 30 |
'canny': 'lllyasviel/sd-controlnet-canny',
|
|
@@ -47,6 +47,8 @@ class Model:
|
|
| 47 |
def __init__(self,
|
| 48 |
base_model_id: str = 'runwayml/stable-diffusion-v1-5',
|
| 49 |
task_name: str = 'canny'):
|
|
|
|
|
|
|
| 50 |
self.base_model_id = ''
|
| 51 |
self.task_name = ''
|
| 52 |
self.pipe = self.load_pipe(base_model_id, task_name)
|
|
@@ -55,33 +57,41 @@ class Model:
|
|
| 55 |
if base_model_id == self.base_model_id and task_name == self.task_name:
|
| 56 |
return self.pipe
|
| 57 |
model_id = CONTROLNET_MODEL_IDS[task_name]
|
| 58 |
-
controlnet = ControlNetModel.from_pretrained(model_id
|
| 59 |
-
torch_dtype=torch.float16)
|
| 60 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 61 |
-
base_model_id,
|
| 62 |
-
safety_checker=None,
|
| 63 |
-
controlnet=controlnet,
|
| 64 |
-
torch_dtype=torch.float16)
|
| 65 |
pipe.scheduler = UniPCMultistepScheduler.from_config(
|
| 66 |
pipe.scheduler.config)
|
| 67 |
pipe.enable_xformers_memory_efficient_attention()
|
| 68 |
-
pipe.
|
|
|
|
|
|
|
| 69 |
self.base_model_id = base_model_id
|
| 70 |
self.task_name = task_name
|
| 71 |
return pipe
|
| 72 |
|
| 73 |
def set_base_model(self, base_model_id: str) -> str:
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
return self.base_model_id
|
| 76 |
|
| 77 |
def load_controlnet_weight(self, task_name: str) -> None:
|
| 78 |
if task_name == self.task_name:
|
| 79 |
return
|
|
|
|
|
|
|
|
|
|
| 80 |
model_id = CONTROLNET_MODEL_IDS[task_name]
|
| 81 |
-
controlnet = ControlNetModel.from_pretrained(model_id
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
cpu_offload_with_hook(controlnet, torch.device('cuda:0'))
|
| 85 |
self.pipe.controlnet = controlnet
|
| 86 |
self.task_name = task_name
|
| 87 |
|
|
|
|
| 2 |
# The original license file is LICENSE.ControlNet in this repo.
|
| 3 |
from __future__ import annotations
|
| 4 |
|
| 5 |
+
import gc
|
| 6 |
import pathlib
|
| 7 |
import sys
|
| 8 |
|
|
|
|
| 25 |
from annotator.openpose import apply_openpose
|
| 26 |
from annotator.uniformer import apply_uniformer
|
| 27 |
from annotator.util import HWC3, resize_image
|
|
|
|
| 28 |
|
| 29 |
CONTROLNET_MODEL_IDS = {
|
| 30 |
'canny': 'lllyasviel/sd-controlnet-canny',
|
|
|
|
| 47 |
def __init__(self,
|
| 48 |
base_model_id: str = 'runwayml/stable-diffusion-v1-5',
|
| 49 |
task_name: str = 'canny'):
|
| 50 |
+
self.device = torch.device(
|
| 51 |
+
'cuda:0' if torch.cuda.is_available() else 'cpu')
|
| 52 |
self.base_model_id = ''
|
| 53 |
self.task_name = ''
|
| 54 |
self.pipe = self.load_pipe(base_model_id, task_name)
|
|
|
|
| 57 |
if base_model_id == self.base_model_id and task_name == self.task_name:
|
| 58 |
return self.pipe
|
| 59 |
model_id = CONTROLNET_MODEL_IDS[task_name]
|
| 60 |
+
controlnet = ControlNetModel.from_pretrained(model_id)
|
|
|
|
| 61 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 62 |
+
base_model_id, safety_checker=None, controlnet=controlnet)
|
|
|
|
|
|
|
|
|
|
| 63 |
pipe.scheduler = UniPCMultistepScheduler.from_config(
|
| 64 |
pipe.scheduler.config)
|
| 65 |
pipe.enable_xformers_memory_efficient_attention()
|
| 66 |
+
pipe.to(self.device)
|
| 67 |
+
torch.cuda.empty_cache()
|
| 68 |
+
gc.collect()
|
| 69 |
self.base_model_id = base_model_id
|
| 70 |
self.task_name = task_name
|
| 71 |
return pipe
|
| 72 |
|
| 73 |
def set_base_model(self, base_model_id: str) -> str:
|
| 74 |
+
if not base_model_id or base_model_id == self.base_model_id:
|
| 75 |
+
return self.base_model_id
|
| 76 |
+
del self.pipe
|
| 77 |
+
torch.cuda.empty_cache()
|
| 78 |
+
gc.collect()
|
| 79 |
+
try:
|
| 80 |
+
self.pipe = self.load_pipe(base_model_id, self.task_name)
|
| 81 |
+
except Exception:
|
| 82 |
+
self.pipe = self.load_pipe(self.base_model_id, self.task_name)
|
| 83 |
return self.base_model_id
|
| 84 |
|
| 85 |
def load_controlnet_weight(self, task_name: str) -> None:
|
| 86 |
if task_name == self.task_name:
|
| 87 |
return
|
| 88 |
+
del self.pipe.controlnet
|
| 89 |
+
torch.cuda.empty_cache()
|
| 90 |
+
gc.collect()
|
| 91 |
model_id = CONTROLNET_MODEL_IDS[task_name]
|
| 92 |
+
controlnet = ControlNetModel.from_pretrained(model_id).to(self.device)
|
| 93 |
+
torch.cuda.empty_cache()
|
| 94 |
+
gc.collect()
|
|
|
|
| 95 |
self.pipe.controlnet = controlnet
|
| 96 |
self.task_name = task_name
|
| 97 |
|