init
Browse files
modnet.py
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import cv2
|
| 3 |
+
import argparse
|
| 4 |
+
import numpy as np
|
| 5 |
+
from PIL import Image
|
| 6 |
+
|
| 7 |
+
import onnx
|
| 8 |
+
import onnxruntime
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class ModNet:
|
| 12 |
+
|
| 13 |
+
def __init__(self, model_path):
|
| 14 |
+
# Initialize session and get prediction
|
| 15 |
+
self.session = onnxruntime.InferenceSession(model_path, None)
|
| 16 |
+
|
| 17 |
+
# Get x_scale_factor & y_scale_factor to resize image
|
| 18 |
+
def get_scale_factor(im_h, im_w, ref_size):
|
| 19 |
+
|
| 20 |
+
if max(im_h, im_w) < ref_size or min(im_h, im_w) > ref_size:
|
| 21 |
+
if im_w >= im_h:
|
| 22 |
+
im_rh = ref_size
|
| 23 |
+
im_rw = int(im_w / im_h * ref_size)
|
| 24 |
+
elif im_w < im_h:
|
| 25 |
+
im_rw = ref_size
|
| 26 |
+
im_rh = int(im_h / im_w * ref_size)
|
| 27 |
+
else:
|
| 28 |
+
im_rh = im_h
|
| 29 |
+
im_rw = im_w
|
| 30 |
+
|
| 31 |
+
im_rw = im_rw - im_rw % 32
|
| 32 |
+
im_rh = im_rh - im_rh % 32
|
| 33 |
+
|
| 34 |
+
x_scale_factor = im_rw / im_w
|
| 35 |
+
y_scale_factor = im_rh / im_h
|
| 36 |
+
|
| 37 |
+
return x_scale_factor, y_scale_factor
|
| 38 |
+
|
| 39 |
+
def segment(self, image_path, output_path):
|
| 40 |
+
ref_size = 512
|
| 41 |
+
##############################################
|
| 42 |
+
# Main Inference part
|
| 43 |
+
##############################################
|
| 44 |
+
|
| 45 |
+
# read image
|
| 46 |
+
im = cv2.imread(image_path)
|
| 47 |
+
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
|
| 48 |
+
|
| 49 |
+
# unify image channels to 3
|
| 50 |
+
if len(im.shape) == 2:
|
| 51 |
+
im = im[:, :, None]
|
| 52 |
+
if im.shape[2] == 1:
|
| 53 |
+
im = np.repeat(im, 3, axis=2)
|
| 54 |
+
elif im.shape[2] == 4:
|
| 55 |
+
im = im[:, :, 0:3]
|
| 56 |
+
|
| 57 |
+
# normalize values to scale it between -1 to 1
|
| 58 |
+
im = (im - 127.5) / 127.5
|
| 59 |
+
|
| 60 |
+
im_h, im_w, im_c = im.shape
|
| 61 |
+
x, y = get_scale_factor(im_h, im_w, ref_size)
|
| 62 |
+
|
| 63 |
+
# resize image
|
| 64 |
+
im = cv2.resize(im, None, fx=x, fy=y, interpolation=cv2.INTER_AREA)
|
| 65 |
+
|
| 66 |
+
# prepare input shape
|
| 67 |
+
im = np.transpose(im)
|
| 68 |
+
im = np.swapaxes(im, 1, 2)
|
| 69 |
+
im = np.expand_dims(im, axis=0).astype('float32')
|
| 70 |
+
|
| 71 |
+
input_name = self.session.get_inputs()[0].name
|
| 72 |
+
output_name = self.session.get_outputs()[0].name
|
| 73 |
+
result = self.session.run([output_name], {input_name: im})
|
| 74 |
+
|
| 75 |
+
# refine matte
|
| 76 |
+
matte = (np.squeeze(result[0]) * 255).astype('uint8')
|
| 77 |
+
matte = cv2.resize(matte, dsize=(im_w, im_h), interpolation=cv2.INTER_AREA)
|
| 78 |
+
|
| 79 |
+
cv2.imwrite(output_path, matte)
|