init
Browse files- app.py +73 -35
- requirements.txt +10 -8
app.py
CHANGED
|
@@ -22,13 +22,13 @@ import shutil
|
|
| 22 |
from options.test_options import TestOptions
|
| 23 |
from data import CreateDataLoader
|
| 24 |
from models import create_model
|
| 25 |
-
|
|
|
|
| 26 |
from util import html
|
| 27 |
|
| 28 |
import ntpath
|
| 29 |
from util import util
|
| 30 |
|
| 31 |
-
|
| 32 |
ORIGINAL_REPO_URL = 'https://github.com/yiranran/APDrawingGAN2'
|
| 33 |
TITLE = 'yiranran/APDrawingGAN2'
|
| 34 |
DESCRIPTION = f"""This is a demo for {ORIGINAL_REPO_URL}.
|
|
@@ -38,9 +38,9 @@ ARTICLE = """
|
|
| 38 |
|
| 39 |
"""
|
| 40 |
|
| 41 |
-
|
| 42 |
MODEL_REPO = 'hylee/apdrawing_model'
|
| 43 |
|
|
|
|
| 44 |
def parse_args() -> argparse.Namespace:
|
| 45 |
parser = argparse.ArgumentParser()
|
| 46 |
parser.add_argument('--device', type=str, default='cpu')
|
|
@@ -59,14 +59,15 @@ def parse_args() -> argparse.Namespace:
|
|
| 59 |
def load_checkpoint():
|
| 60 |
dir = 'checkpoint'
|
| 61 |
checkpoint_path = huggingface_hub.hf_hub_download(MODEL_REPO,
|
| 62 |
-
|
| 63 |
-
|
| 64 |
print(checkpoint_path)
|
| 65 |
shutil.unpack_archive(checkpoint_path, extract_dir=dir)
|
| 66 |
|
| 67 |
-
print(os.listdir(dir+'/checkpoints'))
|
|
|
|
|
|
|
| 68 |
|
| 69 |
-
return dir+'/checkpoints'
|
| 70 |
|
| 71 |
# save image to the disk
|
| 72 |
def save_images2(image_dir, visuals, image_path, aspect_ratio=1.0, width=256):
|
|
@@ -76,7 +77,7 @@ def save_images2(image_dir, visuals, image_path, aspect_ratio=1.0, width=256):
|
|
| 76 |
imgs = []
|
| 77 |
|
| 78 |
for label, im_data in visuals.items():
|
| 79 |
-
im = util.tensor2im(im_data)#tensor to numpy array [-1,1]->[0,1]->[0,255]
|
| 80 |
image_name = '%s_%s.png' % (name, label)
|
| 81 |
save_path = os.path.join(image_dir, image_name)
|
| 82 |
h, w, _ = im.shape
|
|
@@ -91,6 +92,8 @@ def save_images2(image_dir, visuals, image_path, aspect_ratio=1.0, width=256):
|
|
| 91 |
|
| 92 |
|
| 93 |
SAFEHASH = [x for x in "0123456789-abcdefghijklmnopqrstuvwxyz_ABCDEFGHIJKLMNOPQRSTUVWXYZ"]
|
|
|
|
|
|
|
| 94 |
def compress_UUID():
|
| 95 |
'''
|
| 96 |
根据http://www.ietf.org/rfc/rfc1738.txt,由uuid编码扩bai大字符域生成du串
|
|
@@ -108,13 +111,29 @@ def compress_UUID():
|
|
| 108 |
return safe_code
|
| 109 |
|
| 110 |
|
| 111 |
-
def run(
|
| 112 |
-
image,
|
| 113 |
-
model,
|
| 114 |
-
opt,
|
| 115 |
-
) -> tuple[PIL.Image.Image]:
|
| 116 |
|
| 117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
opt.dataroot = os.path.join(dataroot, 'src/')
|
| 119 |
os.makedirs(opt.dataroot, exist_ok=True)
|
| 120 |
opt.results_dir = os.path.join(dataroot, 'results/')
|
|
@@ -127,25 +146,40 @@ def run(
|
|
| 127 |
|
| 128 |
shutil.copy(image.name, opt.dataroot)
|
| 129 |
|
| 130 |
-
|
| 131 |
-
|
| 132 |
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
#
|
| 136 |
-
|
| 137 |
-
if i >= opt.how_many: # test code only supports batch_size = 1, how_many means how many test images to run
|
| 138 |
-
break
|
| 139 |
-
model.set_input(data)
|
| 140 |
-
model.test()
|
| 141 |
-
visuals = model.get_current_visuals() # in test the loadSize is set to the same as fineSize
|
| 142 |
-
img_path = model.get_image_paths()
|
| 143 |
-
# if i % 5 == 0:
|
| 144 |
-
# print('processing (%04d)-th image... %s' % (i, img_path))
|
| 145 |
-
imgs = save_images2(opt.results_dir, visuals, img_path, aspect_ratio=opt.aspect_ratio, width=opt.display_winsize)
|
| 146 |
|
| 147 |
-
|
| 148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
|
| 150 |
|
| 151 |
def main():
|
|
@@ -178,14 +212,18 @@ def main():
|
|
| 178 |
|
| 179 |
opt.checkpoints_dir = checkpoint_dir
|
| 180 |
|
| 181 |
-
|
| 182 |
model = create_model(opt)
|
| 183 |
model.setup(opt)
|
| 184 |
|
| 185 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
func = functools.update_wrapper(func, run)
|
| 187 |
|
| 188 |
-
|
| 189 |
gr.Interface(
|
| 190 |
func,
|
| 191 |
[
|
|
@@ -196,7 +234,7 @@ def main():
|
|
| 196 |
type='pil',
|
| 197 |
label='Result'),
|
| 198 |
],
|
| 199 |
-
#examples=examples,
|
| 200 |
theme=args.theme,
|
| 201 |
title=TITLE,
|
| 202 |
description=DESCRIPTION,
|
|
|
|
| 22 |
from options.test_options import TestOptions
|
| 23 |
from data import CreateDataLoader
|
| 24 |
from models import create_model
|
| 25 |
+
import dlib
|
| 26 |
+
import preprocess.get_partmask
|
| 27 |
from util import html
|
| 28 |
|
| 29 |
import ntpath
|
| 30 |
from util import util
|
| 31 |
|
|
|
|
| 32 |
ORIGINAL_REPO_URL = 'https://github.com/yiranran/APDrawingGAN2'
|
| 33 |
TITLE = 'yiranran/APDrawingGAN2'
|
| 34 |
DESCRIPTION = f"""This is a demo for {ORIGINAL_REPO_URL}.
|
|
|
|
| 38 |
|
| 39 |
"""
|
| 40 |
|
|
|
|
| 41 |
MODEL_REPO = 'hylee/apdrawing_model'
|
| 42 |
|
| 43 |
+
|
| 44 |
def parse_args() -> argparse.Namespace:
|
| 45 |
parser = argparse.ArgumentParser()
|
| 46 |
parser.add_argument('--device', type=str, default='cpu')
|
|
|
|
| 59 |
def load_checkpoint():
|
| 60 |
dir = 'checkpoint'
|
| 61 |
checkpoint_path = huggingface_hub.hf_hub_download(MODEL_REPO,
|
| 62 |
+
'checkpoints.zip',
|
| 63 |
+
force_filename='checkpoints.zip')
|
| 64 |
print(checkpoint_path)
|
| 65 |
shutil.unpack_archive(checkpoint_path, extract_dir=dir)
|
| 66 |
|
| 67 |
+
print(os.listdir(dir + '/checkpoints'))
|
| 68 |
+
|
| 69 |
+
return dir + '/checkpoints'
|
| 70 |
|
|
|
|
| 71 |
|
| 72 |
# save image to the disk
|
| 73 |
def save_images2(image_dir, visuals, image_path, aspect_ratio=1.0, width=256):
|
|
|
|
| 77 |
imgs = []
|
| 78 |
|
| 79 |
for label, im_data in visuals.items():
|
| 80 |
+
im = util.tensor2im(im_data) # tensor to numpy array [-1,1]->[0,1]->[0,255]
|
| 81 |
image_name = '%s_%s.png' % (name, label)
|
| 82 |
save_path = os.path.join(image_dir, image_name)
|
| 83 |
h, w, _ = im.shape
|
|
|
|
| 92 |
|
| 93 |
|
| 94 |
SAFEHASH = [x for x in "0123456789-abcdefghijklmnopqrstuvwxyz_ABCDEFGHIJKLMNOPQRSTUVWXYZ"]
|
| 95 |
+
|
| 96 |
+
|
| 97 |
def compress_UUID():
|
| 98 |
'''
|
| 99 |
根据http://www.ietf.org/rfc/rfc1738.txt,由uuid编码扩bai大字符域生成du串
|
|
|
|
| 111 |
return safe_code
|
| 112 |
|
| 113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
+
def get_68lm(imgfile, savepath, detector, predictor):
|
| 116 |
+
image = cv2.imread(imgfile)
|
| 117 |
+
rgbImg = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 118 |
+
rects = detector(rgbImg, 1)
|
| 119 |
+
for (i, rect) in enumerate(rects):
|
| 120 |
+
landmarks = predictor(rgbImg, rect)
|
| 121 |
+
landmarks = shape_to_np(landmarks)
|
| 122 |
+
f = open(savepath, 'w')
|
| 123 |
+
for i in range(len(landmarks)):
|
| 124 |
+
lm = landmarks[i]
|
| 125 |
+
print(lm[0], lm[1], file=f)
|
| 126 |
+
f.close()
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
def run(
|
| 130 |
+
image,
|
| 131 |
+
model,
|
| 132 |
+
opt,
|
| 133 |
+
detector,
|
| 134 |
+
predictor,
|
| 135 |
+
) -> tuple[PIL.Image.Image,PIL.Image.Image,PIL.Image.Image,PIL.Image.Image]:
|
| 136 |
+
dataroot = 'images/' + compress_UUID()
|
| 137 |
opt.dataroot = os.path.join(dataroot, 'src/')
|
| 138 |
os.makedirs(opt.dataroot, exist_ok=True)
|
| 139 |
opt.results_dir = os.path.join(dataroot, 'results/')
|
|
|
|
| 146 |
|
| 147 |
shutil.copy(image.name, opt.dataroot)
|
| 148 |
|
| 149 |
+
fullname = os.path.basename(image.name)
|
| 150 |
+
name = fullname.split(".")[0]
|
| 151 |
|
| 152 |
+
imgfile = os.path.join(opt.dataroot, fullname)
|
| 153 |
+
lmfile = os.path.join(opt.lm_dir, name+'.txt')
|
| 154 |
+
# 预处理数据
|
| 155 |
+
get_68lm(imgfile, lmfile, detector, predictor)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
|
| 157 |
+
imgs = []
|
| 158 |
+
for part in ['eyel', 'eyer', 'nose', 'mouth']:
|
| 159 |
+
savepath = os.path.join(opt.bg_dir + part, name+'.png')
|
| 160 |
+
get_partmask.get_partmask(imgfile, part, lmfile, savepath)
|
| 161 |
+
imgs.append(savepath)
|
| 162 |
+
|
| 163 |
+
# data_loader = CreateDataLoader(opt)
|
| 164 |
+
# dataset = data_loader.load_data()
|
| 165 |
+
#
|
| 166 |
+
# imgs = [image.name]
|
| 167 |
+
# # test
|
| 168 |
+
# # model.eval()
|
| 169 |
+
# for i, data in enumerate(dataset):
|
| 170 |
+
# if i >= opt.how_many: # test code only supports batch_size = 1, how_many means how many test images to run
|
| 171 |
+
# break
|
| 172 |
+
# model.set_input(data)
|
| 173 |
+
# model.test()
|
| 174 |
+
# visuals = model.get_current_visuals() # in test the loadSize is set to the same as fineSize
|
| 175 |
+
# img_path = model.get_image_paths()
|
| 176 |
+
# # if i % 5 == 0:
|
| 177 |
+
# # print('processing (%04d)-th image... %s' % (i, img_path))
|
| 178 |
+
# imgs = save_images2(opt.results_dir, visuals, img_path, aspect_ratio=opt.aspect_ratio, width=opt.display_winsize)
|
| 179 |
+
#
|
| 180 |
+
# print(imgs)
|
| 181 |
+
|
| 182 |
+
return PIL.Image.open(imgs[0]),PIL.Image.open(imgs[1]),PIL.Image.open(imgs[2]),PIL.Image.open(imgs[3])
|
| 183 |
|
| 184 |
|
| 185 |
def main():
|
|
|
|
| 212 |
|
| 213 |
opt.checkpoints_dir = checkpoint_dir
|
| 214 |
|
|
|
|
| 215 |
model = create_model(opt)
|
| 216 |
model.setup(opt)
|
| 217 |
|
| 218 |
+
'''
|
| 219 |
+
预处理数据
|
| 220 |
+
'''
|
| 221 |
+
detector = dlib.get_frontal_face_detector()
|
| 222 |
+
predictor = dlib.shape_predictor(checkpoint_dir + '/shape_predictor_68_face_landmarks.dat')
|
| 223 |
+
|
| 224 |
+
func = functools.partial(run, model=model, opt=opt, detector=detector, predictor=predictor)
|
| 225 |
func = functools.update_wrapper(func, run)
|
| 226 |
|
|
|
|
| 227 |
gr.Interface(
|
| 228 |
func,
|
| 229 |
[
|
|
|
|
| 234 |
type='pil',
|
| 235 |
label='Result'),
|
| 236 |
],
|
| 237 |
+
# examples=examples,
|
| 238 |
theme=args.theme,
|
| 239 |
title=TITLE,
|
| 240 |
description=DESCRIPTION,
|
requirements.txt
CHANGED
|
@@ -1,8 +1,10 @@
|
|
| 1 |
-
torch
|
| 2 |
-
torchvision
|
| 3 |
-
dominate
|
| 4 |
-
visdom
|
| 5 |
-
scipy
|
| 6 |
-
numpy
|
| 7 |
-
Pillow
|
| 8 |
-
opencv-python
|
|
|
|
|
|
|
|
|
| 1 |
+
torch==1.1.0
|
| 2 |
+
torchvision==0.4.0
|
| 3 |
+
dominate==2.4.0
|
| 4 |
+
visdom==0.1.8.9
|
| 5 |
+
scipy==1.1.0
|
| 6 |
+
numpy==1.16.4
|
| 7 |
+
Pillow==4.3.0
|
| 8 |
+
opencv-python==4.1.0.25
|
| 9 |
+
dlib==19.18.0
|
| 10 |
+
shapely==1.7.0
|