Spaces:
Running
Running
Commit
·
4e925af
0
Parent(s):
Initial commit
Browse files- app.py +329 -0
- constants.py +6 -0
- df/PaperCentral.py +443 -0
- requirements.txt +3 -0
- style.css +23 -0
- utils.py +16 -0
app.py
ADDED
|
@@ -0,0 +1,329 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from df.PaperCentral import PaperCentral
|
| 3 |
+
from gradio_calendar import Calendar
|
| 4 |
+
from datetime import datetime, timedelta
|
| 5 |
+
from typing import Union, List
|
| 6 |
+
|
| 7 |
+
# Initialize the PaperCentral class instance
|
| 8 |
+
paper_central_df = PaperCentral()
|
| 9 |
+
|
| 10 |
+
# Create the Gradio Blocks app with custom CSS
|
| 11 |
+
with gr.Blocks(css="style.css") as demo:
|
| 12 |
+
gr.Markdown("# Paper Central")
|
| 13 |
+
|
| 14 |
+
# Create a row for navigation buttons and calendar
|
| 15 |
+
with gr.Row():
|
| 16 |
+
with gr.Column(scale=1):
|
| 17 |
+
# Define the 'Next Day' and 'Previous Day' buttons
|
| 18 |
+
next_day_btn = gr.Button("Next Day")
|
| 19 |
+
prev_day_btn = gr.Button("Previous Day")
|
| 20 |
+
with gr.Column(scale=4):
|
| 21 |
+
# Define the calendar component for date selection
|
| 22 |
+
calendar = Calendar(
|
| 23 |
+
type="datetime",
|
| 24 |
+
label="Select a date",
|
| 25 |
+
info="Click the calendar icon to bring up the calendar.",
|
| 26 |
+
value=datetime.today().strftime('%Y-%m-%d') # Default to today's date
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
# Create a row for Hugging Face options and Conference options
|
| 30 |
+
with gr.Row():
|
| 31 |
+
with gr.Column():
|
| 32 |
+
# Define the checkbox group for Hugging Face options
|
| 33 |
+
cat_options = gr.CheckboxGroup(
|
| 34 |
+
label="Category",
|
| 35 |
+
choices=[
|
| 36 |
+
'cs.*',
|
| 37 |
+
'eess.*',
|
| 38 |
+
'econ.*',
|
| 39 |
+
'math.*',
|
| 40 |
+
'astro-ph.*',
|
| 41 |
+
'cond-mat.*',
|
| 42 |
+
'gr-qc',
|
| 43 |
+
'hep-ex',
|
| 44 |
+
'hep-lat',
|
| 45 |
+
'hep-ph',
|
| 46 |
+
'hep-th',
|
| 47 |
+
'math-ph',
|
| 48 |
+
'nlin.*',
|
| 49 |
+
'nucl-ex',
|
| 50 |
+
'nucl-th',
|
| 51 |
+
'physics.*',
|
| 52 |
+
'quant-ph',
|
| 53 |
+
'q-bio.*',
|
| 54 |
+
'q-fin.*',
|
| 55 |
+
'stat.*',
|
| 56 |
+
],
|
| 57 |
+
value=["cs.*"]
|
| 58 |
+
)
|
| 59 |
+
hf_options = gr.CheckboxGroup(
|
| 60 |
+
label="Hugging Face options",
|
| 61 |
+
choices=["show_details", "datasets", "models", "spaces"]
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
with gr.Column():
|
| 65 |
+
# Define the checkbox group for Conference options
|
| 66 |
+
conference_options = gr.CheckboxGroup(
|
| 67 |
+
label="Conference options",
|
| 68 |
+
choices=["In proceedings"] + PaperCentral.CONFERENCES
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
# Define the Dataframe component to display paper data
|
| 72 |
+
# List of columns in your DataFrame
|
| 73 |
+
columns = paper_central_df.COLUMNS_START_PAPER_PAGE
|
| 74 |
+
|
| 75 |
+
paper_central_component = gr.Dataframe(
|
| 76 |
+
label="Paper Data",
|
| 77 |
+
value=paper_central_df.df_prettified[columns],
|
| 78 |
+
datatype=[
|
| 79 |
+
paper_central_df.DATATYPES[column]
|
| 80 |
+
for column in columns
|
| 81 |
+
],
|
| 82 |
+
row_count=(0, "dynamic"),
|
| 83 |
+
interactive=False,
|
| 84 |
+
height=1000,
|
| 85 |
+
elem_id="table",
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
# Define function to move to the next day
|
| 90 |
+
def go_to_next_day(
|
| 91 |
+
date: Union[str, datetime],
|
| 92 |
+
cat_options_list: List[str],
|
| 93 |
+
hf_options_list: List[str],
|
| 94 |
+
conference_options_list: List[str]
|
| 95 |
+
) -> tuple:
|
| 96 |
+
"""
|
| 97 |
+
Moves the selected date to the next day and updates the data.
|
| 98 |
+
|
| 99 |
+
Args:
|
| 100 |
+
date (Union[str, datetime]): The current date selected in the calendar.
|
| 101 |
+
cat_options_list (List[str]): List of selected Category options.
|
| 102 |
+
hf_options_list (List[str]): List of selected Hugging Face options.
|
| 103 |
+
conference_options_list (List[str]): List of selected Conference options.
|
| 104 |
+
|
| 105 |
+
Returns:
|
| 106 |
+
tuple: The new date as a string and the updated Dataframe component.
|
| 107 |
+
"""
|
| 108 |
+
# Ensure the date is in string format
|
| 109 |
+
if isinstance(date, datetime):
|
| 110 |
+
date_str = date.strftime('%Y-%m-%d')
|
| 111 |
+
else:
|
| 112 |
+
date_str = date
|
| 113 |
+
|
| 114 |
+
# Parse the date string and add one day
|
| 115 |
+
new_date = datetime.strptime(date_str, '%Y-%m-%d') + timedelta(days=1)
|
| 116 |
+
new_date_str = new_date.strftime('%Y-%m-%d')
|
| 117 |
+
|
| 118 |
+
# Update the Dataframe
|
| 119 |
+
updated_data = paper_central_df.filter(
|
| 120 |
+
selected_date=new_date_str,
|
| 121 |
+
cat_options=cat_options_list,
|
| 122 |
+
hf_options=hf_options_list,
|
| 123 |
+
conference_options=conference_options_list
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
# Return the new date and updated Dataframe
|
| 127 |
+
return new_date_str, updated_data
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
# Define function to move to the previous day
|
| 131 |
+
def go_to_previous_day(
|
| 132 |
+
date: Union[str, datetime],
|
| 133 |
+
cat_options_list: List[str],
|
| 134 |
+
hf_options_list: List[str],
|
| 135 |
+
conference_options_list: List[str]
|
| 136 |
+
) -> tuple:
|
| 137 |
+
"""
|
| 138 |
+
Moves the selected date to the previous day and updates the data.
|
| 139 |
+
|
| 140 |
+
Args:
|
| 141 |
+
date (Union[str, datetime]): The current date selected in the calendar.
|
| 142 |
+
cat_options_list (List[str]): List of selected Category options.
|
| 143 |
+
hf_options_list (List[str]): List of selected Hugging Face options.
|
| 144 |
+
conference_options_list (List[str]): List of selected Conference options.
|
| 145 |
+
|
| 146 |
+
Returns:
|
| 147 |
+
tuple: The new date as a string and the updated Dataframe component.
|
| 148 |
+
"""
|
| 149 |
+
# Ensure the date is in string format
|
| 150 |
+
if isinstance(date, datetime):
|
| 151 |
+
date_str = date.strftime('%Y-%m-%d')
|
| 152 |
+
else:
|
| 153 |
+
date_str = date
|
| 154 |
+
|
| 155 |
+
# Parse the date string and subtract one day
|
| 156 |
+
new_date = datetime.strptime(date_str, '%Y-%m-%d') - timedelta(days=1)
|
| 157 |
+
new_date_str = new_date.strftime('%Y-%m-%d')
|
| 158 |
+
|
| 159 |
+
# Update the Dataframe
|
| 160 |
+
updated_data = paper_central_df.filter(
|
| 161 |
+
selected_date=new_date_str,
|
| 162 |
+
cat_options=cat_options_list,
|
| 163 |
+
hf_options=hf_options_list,
|
| 164 |
+
conference_options=conference_options_list
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
# Return the new date and updated Dataframe
|
| 168 |
+
return new_date_str, updated_data
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
# Define function to update data when date or options change
|
| 172 |
+
def update_data(
|
| 173 |
+
date: Union[str, datetime],
|
| 174 |
+
cat_options_list: List[str],
|
| 175 |
+
hf_options_list: List[str],
|
| 176 |
+
conference_options_list: List[str]
|
| 177 |
+
):
|
| 178 |
+
"""
|
| 179 |
+
Updates the data displayed in the Dataframe based on the selected date and options.
|
| 180 |
+
|
| 181 |
+
Args:
|
| 182 |
+
date (Union[str, datetime]): The selected date.
|
| 183 |
+
cat_options_list (List[str]): List of selected Category options.
|
| 184 |
+
hf_options_list (List[str]): List of selected Hugging Face options.
|
| 185 |
+
conference_options_list (List[str]): List of selected Conference options.
|
| 186 |
+
|
| 187 |
+
Returns:
|
| 188 |
+
gr.Dataframe.update: An update object for the Dataframe component.
|
| 189 |
+
"""
|
| 190 |
+
return paper_central_df.filter(
|
| 191 |
+
selected_date=date,
|
| 192 |
+
cat_options=cat_options_list,
|
| 193 |
+
hf_options=hf_options_list,
|
| 194 |
+
conference_options=conference_options_list
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
# Function to handle conference options change
|
| 199 |
+
def on_conference_options_change(
|
| 200 |
+
date: Union[str, datetime],
|
| 201 |
+
cat_options_list: List[str],
|
| 202 |
+
hf_options_list: List[str],
|
| 203 |
+
conference_options_list: List[str]
|
| 204 |
+
):
|
| 205 |
+
|
| 206 |
+
cat_options_update = gr.update()
|
| 207 |
+
paper_central_component_update = gr.update()
|
| 208 |
+
visible = True
|
| 209 |
+
|
| 210 |
+
# Some conference options are selected
|
| 211 |
+
# Update cat_options to empty list
|
| 212 |
+
if conference_options_list:
|
| 213 |
+
cat_options_update = gr.update(value=[])
|
| 214 |
+
paper_central_component_update = update_data(
|
| 215 |
+
date,
|
| 216 |
+
[],
|
| 217 |
+
hf_options_list,
|
| 218 |
+
conference_options_list,
|
| 219 |
+
)
|
| 220 |
+
visible = False
|
| 221 |
+
|
| 222 |
+
calendar_update = gr.update(visible=visible)
|
| 223 |
+
next_day_btn_update = gr.update(visible=visible)
|
| 224 |
+
prev_day_btn_update = gr.update(visible=visible)
|
| 225 |
+
|
| 226 |
+
return paper_central_component_update, cat_options_update, calendar_update, next_day_btn_update, prev_day_btn_update
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
# Function to handle category options change
|
| 230 |
+
def on_cat_options_change(
|
| 231 |
+
date: Union[str, datetime],
|
| 232 |
+
cat_options_list: List[str],
|
| 233 |
+
hf_options_list: List[str],
|
| 234 |
+
conference_options_list: List[str]
|
| 235 |
+
):
|
| 236 |
+
conference_options_update = gr.update()
|
| 237 |
+
paper_central_component_update = gr.update()
|
| 238 |
+
visible = False
|
| 239 |
+
|
| 240 |
+
# Some category options are selected
|
| 241 |
+
# Update conference_options to empty list
|
| 242 |
+
if cat_options_list:
|
| 243 |
+
conference_options_update = gr.update(value=[])
|
| 244 |
+
paper_central_component_update = update_data(
|
| 245 |
+
date,
|
| 246 |
+
cat_options_list,
|
| 247 |
+
hf_options_list,
|
| 248 |
+
[],
|
| 249 |
+
)
|
| 250 |
+
visible = True
|
| 251 |
+
|
| 252 |
+
calendar_update = gr.update(visible=visible)
|
| 253 |
+
next_day_btn_update = gr.update(visible=visible)
|
| 254 |
+
prev_day_btn_update = gr.update(visible=visible)
|
| 255 |
+
|
| 256 |
+
return paper_central_component_update, conference_options_update, calendar_update, next_day_btn_update, prev_day_btn_update
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
# Set up the event listener for the 'Next Day' button
|
| 261 |
+
next_day_btn.click(
|
| 262 |
+
fn=go_to_next_day,
|
| 263 |
+
inputs=[calendar, cat_options, hf_options, conference_options],
|
| 264 |
+
outputs=[calendar, paper_central_component],
|
| 265 |
+
)
|
| 266 |
+
|
| 267 |
+
# Set up the event listener for the 'Previous Day' button
|
| 268 |
+
prev_day_btn.click(
|
| 269 |
+
fn=go_to_previous_day,
|
| 270 |
+
inputs=[calendar, cat_options, hf_options, conference_options],
|
| 271 |
+
outputs=[calendar, paper_central_component],
|
| 272 |
+
)
|
| 273 |
+
|
| 274 |
+
# Define the inputs for the filter function
|
| 275 |
+
inputs = [
|
| 276 |
+
calendar,
|
| 277 |
+
cat_options,
|
| 278 |
+
hf_options,
|
| 279 |
+
conference_options,
|
| 280 |
+
]
|
| 281 |
+
|
| 282 |
+
# Set up the event listener for the calendar date change
|
| 283 |
+
calendar.change(
|
| 284 |
+
fn=update_data,
|
| 285 |
+
inputs=inputs,
|
| 286 |
+
outputs=paper_central_component,
|
| 287 |
+
)
|
| 288 |
+
|
| 289 |
+
# Set up the event listener for the Hugging Face options change
|
| 290 |
+
hf_options.change(
|
| 291 |
+
fn=update_data,
|
| 292 |
+
inputs=inputs,
|
| 293 |
+
outputs=paper_central_component,
|
| 294 |
+
)
|
| 295 |
+
|
| 296 |
+
# Event chaining for conference options change
|
| 297 |
+
conference_options.change(
|
| 298 |
+
fn=on_conference_options_change,
|
| 299 |
+
inputs=inputs,
|
| 300 |
+
outputs=[paper_central_component, cat_options, calendar, next_day_btn, prev_day_btn],
|
| 301 |
+
)
|
| 302 |
+
|
| 303 |
+
# Event chaining for category options change
|
| 304 |
+
cat_options.change(
|
| 305 |
+
fn=on_cat_options_change,
|
| 306 |
+
inputs=inputs,
|
| 307 |
+
outputs=[paper_central_component, conference_options, calendar, next_day_btn, prev_day_btn],
|
| 308 |
+
)
|
| 309 |
+
|
| 310 |
+
# Load the initial data when the app starts
|
| 311 |
+
demo.load(
|
| 312 |
+
fn=update_data,
|
| 313 |
+
inputs=inputs,
|
| 314 |
+
outputs=paper_central_component,
|
| 315 |
+
api_name=False,
|
| 316 |
+
)
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
# Define the main function to launch the app
|
| 320 |
+
def main():
|
| 321 |
+
"""
|
| 322 |
+
Launches the Gradio app.
|
| 323 |
+
"""
|
| 324 |
+
demo.launch()
|
| 325 |
+
|
| 326 |
+
|
| 327 |
+
# Run the main function when the script is executed
|
| 328 |
+
if __name__ == "__main__":
|
| 329 |
+
main()
|
constants.py
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
NEURIPS_ICO = ""
|
| 2 |
+
DATASET_ARXIV_SCAN_PAPERS = "IAMJB/scanned-arxiv-papers-id"
|
| 3 |
+
DATASET_CONFERENCE_PAPERS = "IAMJB/paper_conference_aggregate"
|
| 4 |
+
DATASET_DAILY_PAPERS = "hysts-bot-data/daily-papers"
|
| 5 |
+
DATASET_DAILY_PAPERS_STATS = "hysts-bot-data/daily-papers-stats"
|
| 6 |
+
DATASET_COMMUNITY_SCIENCE = "huggingface/community-science-paper-v2"
|
df/PaperCentral.py
ADDED
|
@@ -0,0 +1,443 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
from typing import List, Dict, Optional
|
| 3 |
+
from constants import (
|
| 4 |
+
DATASET_ARXIV_SCAN_PAPERS,
|
| 5 |
+
DATASET_CONFERENCE_PAPERS,
|
| 6 |
+
DATASET_COMMUNITY_SCIENCE,
|
| 7 |
+
NEURIPS_ICO,
|
| 8 |
+
)
|
| 9 |
+
import gradio as gr
|
| 10 |
+
from utils import load_and_process
|
| 11 |
+
import numpy as np
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class PaperCentral:
|
| 15 |
+
"""
|
| 16 |
+
A class to manage and process paper data for display in a Gradio Dataframe component.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
CONFERENCES = [
|
| 20 |
+
"ACL2023",
|
| 21 |
+
"ACL2024",
|
| 22 |
+
"COLING2024",
|
| 23 |
+
"CVPR2023",
|
| 24 |
+
"CVPR2024",
|
| 25 |
+
"ECCV2024",
|
| 26 |
+
"EMNLP2023",
|
| 27 |
+
"NAACL2023",
|
| 28 |
+
"NeurIPS2023",
|
| 29 |
+
"NeurIPS2023 D&B",
|
| 30 |
+
]
|
| 31 |
+
CONFERENCES_ICONS = {
|
| 32 |
+
"ACL2023": 'https://aclanthology.org/aclicon.ico',
|
| 33 |
+
"ACL2024": 'https://aclanthology.org/aclicon.ico',
|
| 34 |
+
"COLING2024": 'https://aclanthology.org/aclicon.ico',
|
| 35 |
+
"CVPR2023": "https://openaccess.thecvf.com/favicon.ico",
|
| 36 |
+
"CVPR2024": "https://openaccess.thecvf.com/favicon.ico",
|
| 37 |
+
"ECCV2024": "https://openaccess.thecvf.com/favicon.ico",
|
| 38 |
+
"EMNLP2023": 'https://aclanthology.org/aclicon.ico',
|
| 39 |
+
"NAACL2023": 'https://aclanthology.org/aclicon.ico',
|
| 40 |
+
"NeurIPS2023": NEURIPS_ICO,
|
| 41 |
+
"NeurIPS2023 D&B": NEURIPS_ICO,
|
| 42 |
+
}
|
| 43 |
+
|
| 44 |
+
# Class-level constants defining columns and their data types
|
| 45 |
+
COLUMNS_START_PAPER_PAGE: List[str] = [
|
| 46 |
+
'date',
|
| 47 |
+
'arxiv_id',
|
| 48 |
+
'paper_page',
|
| 49 |
+
'title',
|
| 50 |
+
]
|
| 51 |
+
|
| 52 |
+
COLUMNS_ORDER_PAPER_PAGE: List[str] = [
|
| 53 |
+
'date',
|
| 54 |
+
'arxiv_id',
|
| 55 |
+
'paper_page',
|
| 56 |
+
'num_models',
|
| 57 |
+
'num_datasets',
|
| 58 |
+
'num_spaces',
|
| 59 |
+
'conference_name',
|
| 60 |
+
'id',
|
| 61 |
+
'type',
|
| 62 |
+
'proceedings',
|
| 63 |
+
'title',
|
| 64 |
+
'upvotes',
|
| 65 |
+
'num_comments',
|
| 66 |
+
]
|
| 67 |
+
|
| 68 |
+
DATATYPES: Dict[str, str] = {
|
| 69 |
+
'date': 'str',
|
| 70 |
+
'arxiv_id': 'markdown',
|
| 71 |
+
'paper_page': 'markdown',
|
| 72 |
+
'upvotes': 'str',
|
| 73 |
+
'num_comments': 'str',
|
| 74 |
+
'num_models': 'markdown',
|
| 75 |
+
'num_datasets': 'markdown',
|
| 76 |
+
'num_spaces': 'markdown',
|
| 77 |
+
'title': 'str',
|
| 78 |
+
'proceedings': 'markdown',
|
| 79 |
+
'conference_name': 'str',
|
| 80 |
+
'id': 'str',
|
| 81 |
+
'type': 'str',
|
| 82 |
+
}
|
| 83 |
+
|
| 84 |
+
# Mapping for renaming columns for display purposes
|
| 85 |
+
COLUMN_RENAME_MAP: Dict[str, str] = {
|
| 86 |
+
'num_models': 'models',
|
| 87 |
+
'num_spaces': 'spaces',
|
| 88 |
+
'num_datasets': 'datasets',
|
| 89 |
+
'conference_name': 'venue',
|
| 90 |
+
}
|
| 91 |
+
|
| 92 |
+
def __init__(self):
|
| 93 |
+
"""
|
| 94 |
+
Initialize the PaperCentral class by loading and processing the datasets.
|
| 95 |
+
"""
|
| 96 |
+
self.df_raw: pd.DataFrame = self.get_df()
|
| 97 |
+
self.df_prettified: pd.DataFrame = self.prettify(self.df_raw)
|
| 98 |
+
|
| 99 |
+
@staticmethod
|
| 100 |
+
def get_columns_order(columns: List[str]) -> List[str]:
|
| 101 |
+
"""
|
| 102 |
+
Get columns ordered according to COLUMNS_ORDER_PAPER_PAGE.
|
| 103 |
+
|
| 104 |
+
Args:
|
| 105 |
+
columns (List[str]): List of column names to order.
|
| 106 |
+
|
| 107 |
+
Returns:
|
| 108 |
+
List[str]: Ordered list of column names.
|
| 109 |
+
"""
|
| 110 |
+
return [c for c in PaperCentral.COLUMNS_ORDER_PAPER_PAGE if c in columns]
|
| 111 |
+
|
| 112 |
+
@staticmethod
|
| 113 |
+
def get_columns_datatypes(columns: List[str]) -> List[str]:
|
| 114 |
+
"""
|
| 115 |
+
Get data types for the specified columns.
|
| 116 |
+
|
| 117 |
+
Args:
|
| 118 |
+
columns (List[str]): List of column names.
|
| 119 |
+
|
| 120 |
+
Returns:
|
| 121 |
+
List[str]: List of data types corresponding to the columns.
|
| 122 |
+
"""
|
| 123 |
+
return [PaperCentral.DATATYPES[c] for c in columns]
|
| 124 |
+
|
| 125 |
+
@staticmethod
|
| 126 |
+
def get_df() -> pd.DataFrame:
|
| 127 |
+
"""
|
| 128 |
+
Load and merge datasets to create the raw DataFrame.
|
| 129 |
+
|
| 130 |
+
Returns:
|
| 131 |
+
pd.DataFrame: The merged and processed DataFrame.
|
| 132 |
+
"""
|
| 133 |
+
# Load datasets
|
| 134 |
+
arxiv_scan_papers: pd.DataFrame = load_and_process(DATASET_ARXIV_SCAN_PAPERS)[
|
| 135 |
+
['arxiv_id', 'published_date', 'categories', 'title', 'primary_category',
|
| 136 |
+
'huggingface_urls']
|
| 137 |
+
]
|
| 138 |
+
arxiv_scan_papers['published_date'] = pd.to_datetime(arxiv_scan_papers['published_date']) + pd.DateOffset(
|
| 139 |
+
days=1)
|
| 140 |
+
|
| 141 |
+
community_science_papers: pd.DataFrame = load_and_process(DATASET_COMMUNITY_SCIENCE)[
|
| 142 |
+
['arxiv_id', 'date', 'upvotes', 'num_comments', 'github', 'num_models', 'num_datasets', 'num_spaces',
|
| 143 |
+
'title']
|
| 144 |
+
]
|
| 145 |
+
|
| 146 |
+
conference_papers: pd.DataFrame = load_and_process(DATASET_CONFERENCE_PAPERS)[
|
| 147 |
+
['id', 'proceedings', 'type', 'arxiv_id', 'title', 'conference_name']
|
| 148 |
+
]
|
| 149 |
+
|
| 150 |
+
# Merge arxiv_scan_papers and community_science_papers on 'arxiv_id'
|
| 151 |
+
merged_df: pd.DataFrame = pd.merge(arxiv_scan_papers, community_science_papers, on='arxiv_id', how='outer')
|
| 152 |
+
merged_df['title'] = merged_df['title_x'].combine_first(merged_df['title_y'])
|
| 153 |
+
merged_df = merged_df.drop(columns=['title_x', 'title_y'])
|
| 154 |
+
|
| 155 |
+
final_merged_df: pd.DataFrame = pd.merge(
|
| 156 |
+
merged_df,
|
| 157 |
+
conference_papers,
|
| 158 |
+
on='arxiv_id',
|
| 159 |
+
how='outer'
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
# Combine the 'title' columns into one
|
| 163 |
+
final_merged_df['title'] = final_merged_df['title_x'].combine_first(final_merged_df['title_y'])
|
| 164 |
+
|
| 165 |
+
# Drop the redundant 'title_x' and 'title_y' columns
|
| 166 |
+
final_merged_df = final_merged_df.drop(columns=['title_x', 'title_y'])
|
| 167 |
+
|
| 168 |
+
# Use 'date' from community_science_papers if available; otherwise, use 'published_date'
|
| 169 |
+
final_merged_df['date'] = final_merged_df['date'].combine_first(final_merged_df['published_date'])
|
| 170 |
+
final_merged_df.drop(columns=['published_date'], inplace=True)
|
| 171 |
+
|
| 172 |
+
# If 'arxiv_id' is in community_science_papers, set 'paper_page' to 'arxiv_id'
|
| 173 |
+
final_merged_df.loc[
|
| 174 |
+
final_merged_df['arxiv_id'].isin(community_science_papers['arxiv_id']), 'paper_page'
|
| 175 |
+
] = final_merged_df['arxiv_id']
|
| 176 |
+
|
| 177 |
+
# Format the 'date' column
|
| 178 |
+
final_merged_df = PaperCentral.format_df_date(final_merged_df, "date")
|
| 179 |
+
final_merged_df['date'] = final_merged_df['date'].astype(str)
|
| 180 |
+
|
| 181 |
+
print(final_merged_df.head())
|
| 182 |
+
return final_merged_df
|
| 183 |
+
|
| 184 |
+
@staticmethod
|
| 185 |
+
def format_df_date(df: pd.DataFrame, date_column: str = "date") -> pd.DataFrame:
|
| 186 |
+
"""
|
| 187 |
+
Format the date column in the DataFrame to 'YYYY-MM-DD'.
|
| 188 |
+
|
| 189 |
+
Args:
|
| 190 |
+
df (pd.DataFrame): The DataFrame to format.
|
| 191 |
+
date_column (str): The name of the date column.
|
| 192 |
+
|
| 193 |
+
Returns:
|
| 194 |
+
pd.DataFrame: The DataFrame with the formatted date column.
|
| 195 |
+
"""
|
| 196 |
+
df.loc[:, date_column] = pd.to_datetime(df[date_column]).dt.strftime('%Y-%m-%d')
|
| 197 |
+
return df
|
| 198 |
+
|
| 199 |
+
@staticmethod
|
| 200 |
+
def prettify(df: pd.DataFrame) -> pd.DataFrame:
|
| 201 |
+
"""
|
| 202 |
+
Prettify the DataFrame by adding markdown links and sorting.
|
| 203 |
+
|
| 204 |
+
Args:
|
| 205 |
+
df (pd.DataFrame): The DataFrame to prettify.
|
| 206 |
+
|
| 207 |
+
Returns:
|
| 208 |
+
pd.DataFrame: The prettified DataFrame.
|
| 209 |
+
"""
|
| 210 |
+
|
| 211 |
+
def update_row(row: pd.Series) -> pd.Series:
|
| 212 |
+
"""
|
| 213 |
+
Update a row by adding markdown links to 'paper_page' and 'arxiv_id' columns.
|
| 214 |
+
|
| 215 |
+
Args:
|
| 216 |
+
row (pd.Series): A row from the DataFrame.
|
| 217 |
+
|
| 218 |
+
Returns:
|
| 219 |
+
pd.Series: The updated row.
|
| 220 |
+
"""
|
| 221 |
+
# Process 'num_models' column
|
| 222 |
+
if (
|
| 223 |
+
'num_models' in row and pd.notna(row['num_models']) and row["arxiv_id"]
|
| 224 |
+
and float(row['num_models']) > 0
|
| 225 |
+
):
|
| 226 |
+
num_models = int(float(row['num_models']))
|
| 227 |
+
row['num_models'] = (
|
| 228 |
+
f"[{num_models}](https://huggingface.co/models?other=arxiv:{row['arxiv_id']})"
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
if (
|
| 232 |
+
'num_datasets' in row and pd.notna(row['num_datasets']) and row["arxiv_id"]
|
| 233 |
+
and float(row['num_datasets']) > 0
|
| 234 |
+
):
|
| 235 |
+
num_datasets = int(float(row['num_datasets']))
|
| 236 |
+
row['num_datasets'] = (
|
| 237 |
+
f"[{num_datasets}](https://huggingface.co/datasets?other=arxiv:{row['arxiv_id']})"
|
| 238 |
+
)
|
| 239 |
+
|
| 240 |
+
if (
|
| 241 |
+
'num_spaces' in row and pd.notna(row['num_spaces']) and row["arxiv_id"]
|
| 242 |
+
and float(row['num_spaces']) > 0
|
| 243 |
+
):
|
| 244 |
+
num_spaces = int(float(row['num_spaces']))
|
| 245 |
+
row['num_spaces'] = (
|
| 246 |
+
f"[{num_spaces}](https://huggingface.co/spaces?other=arxiv:{row['arxiv_id']})"
|
| 247 |
+
)
|
| 248 |
+
|
| 249 |
+
if 'proceedings' in row and pd.notna(row['proceedings']) and row['proceedings']:
|
| 250 |
+
image_url = PaperCentral.CONFERENCES_ICONS[row["conference_name"]]
|
| 251 |
+
|
| 252 |
+
style = "display:inline-block; vertical-align:middle; width: 16px; height:16px"
|
| 253 |
+
row['proceedings'] = (
|
| 254 |
+
f"<img src='{image_url}' style='{style}'/>"
|
| 255 |
+
f"<a href='{row['proceedings']}'>proc_page</a>"
|
| 256 |
+
)
|
| 257 |
+
|
| 258 |
+
####
|
| 259 |
+
### This should be processed last :)
|
| 260 |
+
####
|
| 261 |
+
# Add markdown link to 'paper_page' if it exists
|
| 262 |
+
if 'paper_page' in row and pd.notna(row['paper_page']):
|
| 263 |
+
row['paper_page'] = f"🤗[paper_page](https://huggingface.co/papers/{row['paper_page']})"
|
| 264 |
+
|
| 265 |
+
# Add image and link to 'arxiv_id' if it exists
|
| 266 |
+
if 'arxiv_id' in row and pd.notna(row['arxiv_id']):
|
| 267 |
+
image_url = "https://arxiv.org/static/browse/0.3.4/images/icons/favicon-16x16.png"
|
| 268 |
+
style = "display:inline-block; vertical-align:middle;"
|
| 269 |
+
row['arxiv_id'] = (
|
| 270 |
+
f"<img src='{image_url}' style='{style}'/>"
|
| 271 |
+
f"<a href='https://arxiv.org/abs/{row['arxiv_id']}'>arxiv_page</a>"
|
| 272 |
+
)
|
| 273 |
+
|
| 274 |
+
return row
|
| 275 |
+
|
| 276 |
+
df = df.copy()
|
| 277 |
+
|
| 278 |
+
# Sort rows to display entries with 'paper_page' first
|
| 279 |
+
if 'paper_page' in df.columns:
|
| 280 |
+
df['has_paper_page'] = df['paper_page'].notna()
|
| 281 |
+
df.sort_values(by='has_paper_page', ascending=False, inplace=True)
|
| 282 |
+
df.drop(columns='has_paper_page', inplace=True)
|
| 283 |
+
|
| 284 |
+
# Apply the update_row function to each row
|
| 285 |
+
prettified_df: pd.DataFrame = df.apply(update_row, axis=1)
|
| 286 |
+
return prettified_df
|
| 287 |
+
|
| 288 |
+
def rename_columns_for_display(self, df: pd.DataFrame) -> pd.DataFrame:
|
| 289 |
+
"""
|
| 290 |
+
Rename columns in the DataFrame according to COLUMN_RENAME_MAP for display purposes.
|
| 291 |
+
|
| 292 |
+
Args:
|
| 293 |
+
df (pd.DataFrame): The DataFrame whose columns need to be renamed.
|
| 294 |
+
|
| 295 |
+
Returns:
|
| 296 |
+
pd.DataFrame: The DataFrame with renamed columns.
|
| 297 |
+
"""
|
| 298 |
+
return df.rename(columns=self.COLUMN_RENAME_MAP)
|
| 299 |
+
|
| 300 |
+
def filter(
|
| 301 |
+
self,
|
| 302 |
+
selected_date: Optional[str] = None,
|
| 303 |
+
cat_options: Optional[List[str]] = None,
|
| 304 |
+
hf_options: Optional[List[str]] = None,
|
| 305 |
+
conference_options: Optional[List[str]] = None
|
| 306 |
+
) -> gr.update:
|
| 307 |
+
"""
|
| 308 |
+
Filter the DataFrame based on selected date and options, and prepare it for display.
|
| 309 |
+
|
| 310 |
+
Args:
|
| 311 |
+
selected_date (Optional[str]): The date to filter the DataFrame.
|
| 312 |
+
hf_options (Optional[List[str]]): List of options selected by the user.
|
| 313 |
+
conference_options (Optional[List[str]]): List of conference options selected by the user.
|
| 314 |
+
|
| 315 |
+
Returns:
|
| 316 |
+
gr.Update: An update object for the Gradio Dataframe component.
|
| 317 |
+
"""
|
| 318 |
+
filtered_df: pd.DataFrame = self.df_raw.copy()
|
| 319 |
+
|
| 320 |
+
# Start with the initial columns to display
|
| 321 |
+
columns_to_show: List[str] = PaperCentral.COLUMNS_START_PAPER_PAGE.copy()
|
| 322 |
+
|
| 323 |
+
if cat_options:
|
| 324 |
+
options = [o.replace(".*", "") for o in cat_options]
|
| 325 |
+
# Initialize filter series
|
| 326 |
+
conference_filter = pd.Series(False, index=filtered_df.index)
|
| 327 |
+
for option in options:
|
| 328 |
+
# Filter rows where 'conference_name' contains the conference string (case-insensitive)
|
| 329 |
+
conference_filter |= (
|
| 330 |
+
filtered_df['primary_category'].notna() &
|
| 331 |
+
filtered_df['primary_category'].str.contains(option, case=False)
|
| 332 |
+
)
|
| 333 |
+
filtered_df = filtered_df[conference_filter]
|
| 334 |
+
|
| 335 |
+
# Date
|
| 336 |
+
if selected_date and not conference_options:
|
| 337 |
+
selected_date = pd.to_datetime(selected_date).strftime('%Y-%m-%d')
|
| 338 |
+
filtered_df = filtered_df[filtered_df['date'] == selected_date]
|
| 339 |
+
|
| 340 |
+
# HF options
|
| 341 |
+
if hf_options:
|
| 342 |
+
if "show_details" in hf_options:
|
| 343 |
+
# Filter rows where 'paper_page' is not empty or NaN
|
| 344 |
+
filtered_df = filtered_df[
|
| 345 |
+
(filtered_df['paper_page'] != "") & (filtered_df['paper_page'].notna())
|
| 346 |
+
]
|
| 347 |
+
|
| 348 |
+
# Add 'upvotes' column if not already in columns_to_show
|
| 349 |
+
if 'upvotes' not in columns_to_show:
|
| 350 |
+
columns_to_show.append('upvotes')
|
| 351 |
+
|
| 352 |
+
# Add 'num_models' column if not already in columns_to_show
|
| 353 |
+
if 'num_models' not in columns_to_show:
|
| 354 |
+
columns_to_show.append('num_models')
|
| 355 |
+
if 'num_datasets' not in columns_to_show:
|
| 356 |
+
columns_to_show.append('num_datasets')
|
| 357 |
+
if 'num_spaces' not in columns_to_show:
|
| 358 |
+
columns_to_show.append('num_spaces')
|
| 359 |
+
|
| 360 |
+
if "datasets" in hf_options:
|
| 361 |
+
if 'num_datasets' not in columns_to_show:
|
| 362 |
+
columns_to_show.append('num_datasets')
|
| 363 |
+
filtered_df = filtered_df[filtered_df['num_datasets'] != 0]
|
| 364 |
+
|
| 365 |
+
if "models" in hf_options:
|
| 366 |
+
if 'num_models' not in columns_to_show:
|
| 367 |
+
columns_to_show.append('num_models')
|
| 368 |
+
filtered_df = filtered_df[filtered_df['num_models'] != 0]
|
| 369 |
+
if "spaces" in hf_options:
|
| 370 |
+
if 'num_spaces' not in columns_to_show:
|
| 371 |
+
columns_to_show.append('num_spaces')
|
| 372 |
+
filtered_df = filtered_df[filtered_df['num_spaces'] != 0]
|
| 373 |
+
|
| 374 |
+
# Apply conference filtering
|
| 375 |
+
if conference_options:
|
| 376 |
+
|
| 377 |
+
columns_to_show.remove("date")
|
| 378 |
+
columns_to_show.remove("arxiv_id")
|
| 379 |
+
|
| 380 |
+
if 'conference_name' not in columns_to_show:
|
| 381 |
+
columns_to_show.append('conference_name')
|
| 382 |
+
|
| 383 |
+
if 'proceedings' not in columns_to_show:
|
| 384 |
+
columns_to_show.append('proceedings')
|
| 385 |
+
|
| 386 |
+
if 'type' not in columns_to_show:
|
| 387 |
+
columns_to_show.append('type')
|
| 388 |
+
|
| 389 |
+
if 'id' not in columns_to_show:
|
| 390 |
+
columns_to_show.append('id')
|
| 391 |
+
|
| 392 |
+
# If "In proceedings" is selected
|
| 393 |
+
if "In proceedings" in conference_options:
|
| 394 |
+
# Filter rows where 'conference_name' is not None, not NaN, and not empty
|
| 395 |
+
filtered_df = filtered_df[
|
| 396 |
+
filtered_df['conference_name'].notna() & (filtered_df['conference_name'] != "")
|
| 397 |
+
]
|
| 398 |
+
|
| 399 |
+
# For other conference options
|
| 400 |
+
other_conferences = [conf for conf in conference_options if conf != "In proceedings"]
|
| 401 |
+
if other_conferences:
|
| 402 |
+
# Initialize filter series
|
| 403 |
+
conference_filter = pd.Series(False, index=filtered_df.index)
|
| 404 |
+
for conference in other_conferences:
|
| 405 |
+
# Filter rows where 'conference_name' contains the conference string (case-insensitive)
|
| 406 |
+
conference_filter |= (
|
| 407 |
+
filtered_df['conference_name'].notna() &
|
| 408 |
+
(filtered_df['conference_name'].str.lower() == conference.lower())
|
| 409 |
+
)
|
| 410 |
+
filtered_df = filtered_df[conference_filter]
|
| 411 |
+
|
| 412 |
+
# Prettify the DataFrame
|
| 413 |
+
filtered_df = self.prettify(filtered_df)
|
| 414 |
+
|
| 415 |
+
# Ensure columns are ordered according to COLUMNS_ORDER_PAPER_PAGE
|
| 416 |
+
columns_in_order: List[str] = [col for col in PaperCentral.COLUMNS_ORDER_PAPER_PAGE if col in columns_to_show]
|
| 417 |
+
|
| 418 |
+
# Select and reorder the columns
|
| 419 |
+
filtered_df = filtered_df[columns_in_order]
|
| 420 |
+
|
| 421 |
+
# Rename columns for display
|
| 422 |
+
filtered_df = self.rename_columns_for_display(filtered_df)
|
| 423 |
+
|
| 424 |
+
# Get the corresponding data types for the columns
|
| 425 |
+
new_datatypes: List[str] = [
|
| 426 |
+
PaperCentral.DATATYPES.get(self._get_original_column_name(col), 'str') for col in filtered_df.columns
|
| 427 |
+
]
|
| 428 |
+
|
| 429 |
+
# Return an update object to modify the Dataframe component
|
| 430 |
+
return gr.update(value=filtered_df, datatype=new_datatypes)
|
| 431 |
+
|
| 432 |
+
def _get_original_column_name(self, display_column_name: str) -> str:
|
| 433 |
+
"""
|
| 434 |
+
Retrieve the original column name given a display column name.
|
| 435 |
+
|
| 436 |
+
Args:
|
| 437 |
+
display_column_name (str): The display name of the column.
|
| 438 |
+
|
| 439 |
+
Returns:
|
| 440 |
+
str: The original name of the column.
|
| 441 |
+
"""
|
| 442 |
+
inverse_map = {v: k for k, v in self.COLUMN_RENAME_MAP.items()}
|
| 443 |
+
return inverse_map.get(display_column_name, display_column_name)
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
gradio_calendar
|
| 3 |
+
datasets
|
style.css
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
h1 {
|
| 2 |
+
text-align: center;
|
| 3 |
+
display: block;
|
| 4 |
+
}
|
| 5 |
+
|
| 6 |
+
body a,
|
| 7 |
+
.contain a,
|
| 8 |
+
#table a {
|
| 9 |
+
background-color: transparent;
|
| 10 |
+
color: #58a6ff;
|
| 11 |
+
text-decoration: none;
|
| 12 |
+
}
|
| 13 |
+
|
| 14 |
+
body a:active,
|
| 15 |
+
body a:hover {
|
| 16 |
+
outline-width: 0;
|
| 17 |
+
}
|
| 18 |
+
|
| 19 |
+
body a:hover {
|
| 20 |
+
text-decoration: underline;
|
| 21 |
+
}
|
| 22 |
+
|
| 23 |
+
|
utils.py
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
from datasets import load_dataset
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def arxiv_remove_version_suffix(arxiv_id):
|
| 6 |
+
# Use regex to remove version suffix (e.g., v1, v2, etc.) if present
|
| 7 |
+
cleaned_id = re.sub(r'v\d+$', '', arxiv_id)
|
| 8 |
+
return cleaned_id
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
# Load datasets
|
| 12 |
+
def load_and_process(dataset_name):
|
| 13 |
+
data = load_dataset(dataset_name, split="train").to_pandas()
|
| 14 |
+
if 'arxiv_id' in data.columns:
|
| 15 |
+
data['arxiv_id'] = data['arxiv_id'].apply(arxiv_remove_version_suffix)
|
| 16 |
+
return data
|