Spaces:
Build error
Build error
merging dataset statistics file
Browse files- data_measurements/dataset_statistics.py +112 -217
data_measurements/dataset_statistics.py
CHANGED
|
@@ -15,11 +15,12 @@
|
|
| 15 |
import json
|
| 16 |
import logging
|
| 17 |
import statistics
|
| 18 |
-
import torch
|
| 19 |
from os import mkdir
|
| 20 |
from os.path import exists, isdir
|
| 21 |
from os.path import join as pjoin
|
| 22 |
|
|
|
|
|
|
|
| 23 |
import nltk
|
| 24 |
import numpy as np
|
| 25 |
import pandas as pd
|
|
@@ -28,31 +29,17 @@ import plotly.express as px
|
|
| 28 |
import plotly.figure_factory as ff
|
| 29 |
import plotly.graph_objects as go
|
| 30 |
import pyarrow.feather as feather
|
| 31 |
-
import matplotlib.pyplot as plt
|
| 32 |
-
import matplotlib.image as mpimg
|
| 33 |
import seaborn as sns
|
|
|
|
| 34 |
from datasets import load_from_disk
|
| 35 |
from nltk.corpus import stopwords
|
| 36 |
from sklearn.feature_extraction.text import CountVectorizer
|
| 37 |
|
| 38 |
-
from .dataset_utils import (
|
| 39 |
-
|
| 40 |
-
TOT_OPEN_WORDS,
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
EMBEDDING_FIELD,
|
| 44 |
-
LENGTH_FIELD,
|
| 45 |
-
OUR_LABEL_FIELD,
|
| 46 |
-
OUR_TEXT_FIELD,
|
| 47 |
-
PROP,
|
| 48 |
-
TEXT_NAN_CNT,
|
| 49 |
-
TOKENIZED_FIELD,
|
| 50 |
-
TXT_LEN,
|
| 51 |
-
VOCAB,
|
| 52 |
-
WORD,
|
| 53 |
-
extract_field,
|
| 54 |
-
load_truncated_dataset,
|
| 55 |
-
)
|
| 56 |
from .embeddings import Embeddings
|
| 57 |
from .npmi import nPMI
|
| 58 |
from .zipf import Zipf
|
|
@@ -151,6 +138,7 @@ _NUM_VOCAB_BATCHES = 2000
|
|
| 151 |
_TOP_N = 100
|
| 152 |
_CVEC = CountVectorizer(token_pattern="(?u)\\b\\w+\\b", lowercase=True)
|
| 153 |
|
|
|
|
| 154 |
class DatasetStatisticsCacheClass:
|
| 155 |
def __init__(
|
| 156 |
self,
|
|
@@ -249,13 +237,13 @@ class DatasetStatisticsCacheClass:
|
|
| 249 |
# path to the directory used for caching
|
| 250 |
if not isinstance(text_field, str):
|
| 251 |
text_field = "-".join(text_field)
|
| 252 |
-
#if isinstance(label_field, str):
|
| 253 |
# label_field = label_field
|
| 254 |
-
#else:
|
| 255 |
# label_field = "-".join(label_field)
|
| 256 |
self.cache_path = pjoin(
|
| 257 |
self.cache_dir,
|
| 258 |
-
f"{dset_name}_{dset_config}_{split_name}_{text_field}",
|
| 259 |
)
|
| 260 |
if not isdir(self.cache_path):
|
| 261 |
logs.warning("Creating cache directory %s." % self.cache_path)
|
|
@@ -284,14 +272,15 @@ class DatasetStatisticsCacheClass:
|
|
| 284 |
# Needed for UI
|
| 285 |
self.dup_counts_df_fid = pjoin(self.cache_path, "dup_counts_df.feather")
|
| 286 |
# Needed for UI
|
| 287 |
-
self.fig_tok_length_fid = pjoin(self.cache_path, "fig_tok_length.
|
| 288 |
|
| 289 |
## General text stats
|
| 290 |
# Needed for UI
|
| 291 |
self.general_stats_json_fid = pjoin(self.cache_path, "general_stats_dict.json")
|
| 292 |
# Needed for UI
|
| 293 |
-
self.sorted_top_vocab_df_fid = pjoin(
|
| 294 |
-
|
|
|
|
| 295 |
## Zipf cache files
|
| 296 |
# Needed for UI
|
| 297 |
self.zipf_fid = pjoin(self.cache_path, "zipf_basic_stats.json")
|
|
@@ -303,7 +292,6 @@ class DatasetStatisticsCacheClass:
|
|
| 303 |
self.node_list_fid = pjoin(self.cache_path, "node_list.th")
|
| 304 |
# Needed for UI
|
| 305 |
self.fig_tree_json_fid = pjoin(self.cache_path, "fig_tree.json")
|
| 306 |
-
self.zipf_counts = None
|
| 307 |
|
| 308 |
self.live = False
|
| 309 |
|
|
@@ -343,18 +331,17 @@ class DatasetStatisticsCacheClass:
|
|
| 343 |
and exists(self.dup_counts_df_fid)
|
| 344 |
and exists(self.sorted_top_vocab_df_fid)
|
| 345 |
):
|
| 346 |
-
logs.info(
|
| 347 |
self.load_general_stats()
|
| 348 |
else:
|
| 349 |
if not self.live:
|
| 350 |
-
logs.info(
|
| 351 |
self.prepare_general_stats()
|
| 352 |
if save:
|
| 353 |
write_df(self.sorted_top_vocab_df, self.sorted_top_vocab_df_fid)
|
| 354 |
write_df(self.dup_counts_df, self.dup_counts_df_fid)
|
| 355 |
write_json(self.general_stats_dict, self.general_stats_json_fid)
|
| 356 |
|
| 357 |
-
|
| 358 |
def load_or_prepare_text_lengths(self, save=True):
|
| 359 |
"""
|
| 360 |
The text length widget relies on this function, which provides
|
|
@@ -366,15 +353,13 @@ class DatasetStatisticsCacheClass:
|
|
| 366 |
|
| 367 |
"""
|
| 368 |
# Text length figure
|
| 369 |
-
if
|
| 370 |
self.fig_tok_length_png = mpimg.imread(self.fig_tok_length_fid)
|
| 371 |
-
self.fig_tok_length = read_plotly(self.fig_tok_length_fid)
|
| 372 |
else:
|
| 373 |
if not self.live:
|
| 374 |
self.prepare_fig_text_lengths()
|
| 375 |
if save:
|
| 376 |
-
|
| 377 |
-
|
| 378 |
# Text length dataframe
|
| 379 |
if self.use_cache and exists(self.length_df_fid):
|
| 380 |
self.length_df = feather.read_feather(self.length_df_fid)
|
|
@@ -401,51 +386,48 @@ class DatasetStatisticsCacheClass:
|
|
| 401 |
if not self.live:
|
| 402 |
if self.tokenized_df is None:
|
| 403 |
self.tokenized_df = self.do_tokenization()
|
| 404 |
-
self.tokenized_df[LENGTH_FIELD] = self.tokenized_df[
|
| 405 |
-
|
| 406 |
-
self.length_df = self.tokenized_df[
|
| 407 |
-
[LENGTH_FIELD, OUR_TEXT_FIELD]].sort_values(
|
| 408 |
-
by=[LENGTH_FIELD], ascending=True
|
| 409 |
)
|
|
|
|
|
|
|
|
|
|
| 410 |
|
| 411 |
def prepare_text_length_stats(self):
|
| 412 |
if not self.live:
|
| 413 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
| 414 |
self.prepare_length_df()
|
| 415 |
-
avg_length = sum(self.tokenized_df[LENGTH_FIELD])/len(
|
|
|
|
|
|
|
| 416 |
self.avg_length = round(avg_length, 1)
|
| 417 |
std_length = statistics.stdev(self.tokenized_df[LENGTH_FIELD])
|
| 418 |
self.std_length = round(std_length, 1)
|
| 419 |
self.num_uniq_lengths = len(self.length_df["length"].unique())
|
| 420 |
-
self.length_stats_dict = {
|
| 421 |
-
|
| 422 |
-
|
|
|
|
|
|
|
| 423 |
|
| 424 |
def prepare_fig_text_lengths(self):
|
| 425 |
if not self.live:
|
| 426 |
-
if
|
|
|
|
|
|
|
|
|
|
| 427 |
self.prepare_length_df()
|
| 428 |
self.fig_tok_length = make_fig_lengths(self.tokenized_df, LENGTH_FIELD)
|
| 429 |
|
| 430 |
-
def load_or_prepare_embeddings(self
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
self.node_list = torch.load(self.node_list_fid)
|
| 436 |
-
self.fig_tree = make_tree_plot(self.node_list,
|
| 437 |
-
self.text_dset)
|
| 438 |
-
if save:
|
| 439 |
-
write_plotly(self.fig_tree, self.fig_tree_json_fid)
|
| 440 |
-
else:
|
| 441 |
-
self.embeddings = Embeddings(self, use_cache=self.use_cache)
|
| 442 |
-
self.embeddings.make_hierarchical_clustering()
|
| 443 |
-
self.node_list = self.embeddings.node_list
|
| 444 |
-
self.fig_tree = make_tree_plot(self.node_list,
|
| 445 |
-
self.text_dset)
|
| 446 |
-
if save:
|
| 447 |
-
torch.save(self.node_list, self.node_list_fid)
|
| 448 |
-
write_plotly(self.fig_tree, self.fig_tree_json_fid)
|
| 449 |
|
| 450 |
# get vocab with word counts
|
| 451 |
def load_or_prepare_vocab(self, save=True):
|
|
@@ -455,10 +437,7 @@ class DatasetStatisticsCacheClass:
|
|
| 455 |
:param
|
| 456 |
:return:
|
| 457 |
"""
|
| 458 |
-
if (
|
| 459 |
-
self.use_cache
|
| 460 |
-
and exists(self.vocab_counts_df_fid)
|
| 461 |
-
):
|
| 462 |
logs.info("Reading vocab from cache")
|
| 463 |
self.load_vocab()
|
| 464 |
self.vocab_counts_filtered_df = filter_vocab(self.vocab_counts_df)
|
|
@@ -505,7 +484,9 @@ class DatasetStatisticsCacheClass:
|
|
| 505 |
write_df(self.dup_counts_df, self.dup_counts_df_fid)
|
| 506 |
|
| 507 |
def load_general_stats(self):
|
| 508 |
-
self.general_stats_dict = json.load(
|
|
|
|
|
|
|
| 509 |
with open(self.sorted_top_vocab_df_fid, "rb") as f:
|
| 510 |
self.sorted_top_vocab_df = feather.read_feather(f)
|
| 511 |
self.text_nan_count = self.general_stats_dict[TEXT_NAN_CNT]
|
|
@@ -540,8 +521,7 @@ class DatasetStatisticsCacheClass:
|
|
| 540 |
if not self.live:
|
| 541 |
if self.tokenized_df is None:
|
| 542 |
self.load_or_prepare_tokenized_df()
|
| 543 |
-
dup_df = self.tokenized_df[
|
| 544 |
-
self.tokenized_df.duplicated([OUR_TEXT_FIELD])]
|
| 545 |
self.dup_counts_df = pd.DataFrame(
|
| 546 |
dup_df.pivot_table(
|
| 547 |
columns=[OUR_TEXT_FIELD], aggfunc="size"
|
|
@@ -581,7 +561,7 @@ class DatasetStatisticsCacheClass:
|
|
| 581 |
write_json({"dset peek": self.dset_peek}, self.dset_peek_json_fid)
|
| 582 |
|
| 583 |
def load_or_prepare_tokenized_df(self, save=True):
|
| 584 |
-
if
|
| 585 |
self.tokenized_df = feather.read_feather(self.tokenized_df_fid)
|
| 586 |
else:
|
| 587 |
if not self.live:
|
|
@@ -593,7 +573,7 @@ class DatasetStatisticsCacheClass:
|
|
| 593 |
write_df(self.tokenized_df, self.tokenized_df_fid)
|
| 594 |
|
| 595 |
def load_or_prepare_text_dset(self, save=True):
|
| 596 |
-
if
|
| 597 |
# load extracted text
|
| 598 |
self.text_dset = load_from_disk(self.text_dset_fid)
|
| 599 |
logs.warning("Loaded dataset from disk")
|
|
@@ -711,8 +691,6 @@ class DatasetStatisticsCacheClass:
|
|
| 711 |
zipf_dict = json.load(f)
|
| 712 |
self.z = Zipf()
|
| 713 |
self.z.load(zipf_dict)
|
| 714 |
-
# TODO: Should this be cached?
|
| 715 |
-
self.zipf_counts = self.z.calc_zipf_counts(self.vocab_counts_df)
|
| 716 |
self.zipf_fig = read_plotly(self.zipf_fig_fid)
|
| 717 |
elif self.use_cache and exists(self.zipf_fid):
|
| 718 |
# TODO: Read zipf data so that the vocab is there.
|
|
@@ -775,30 +753,26 @@ class nPMIStatisticsCacheClass:
|
|
| 775 |
and exists(self.npmi_terms_fid)
|
| 776 |
and json.load(open(self.npmi_terms_fid))["available terms"] != []
|
| 777 |
):
|
| 778 |
-
|
| 779 |
else:
|
| 780 |
-
|
| 781 |
-
|
| 782 |
-
|
| 783 |
-
|
| 784 |
-
|
| 785 |
-
|
| 786 |
-
|
| 787 |
-
|
| 788 |
-
|
| 789 |
-
|
| 790 |
-
|
| 791 |
-
|
| 792 |
-
|
| 793 |
-
|
| 794 |
-
|
| 795 |
-
|
| 796 |
-
|
| 797 |
-
|
| 798 |
-
self.available_terms = available_terms
|
| 799 |
-
return self.available_terms
|
| 800 |
-
|
| 801 |
-
def load_or_prepare_joint_npmi(self, subgroup_pair, save=True):
|
| 802 |
"""
|
| 803 |
Run on-the fly, while the app is already open,
|
| 804 |
as it depends on the subgroup terms that the user chooses
|
|
@@ -823,7 +797,13 @@ class nPMIStatisticsCacheClass:
|
|
| 823 |
# When everything is already computed for the selected subgroups.
|
| 824 |
logs.info("Loading cached joint npmi")
|
| 825 |
joint_npmi_df = self.load_joint_npmi_df(joint_npmi_fid)
|
| 826 |
-
npmi_display_cols = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 827 |
joint_npmi_df = joint_npmi_df[npmi_display_cols]
|
| 828 |
# When maybe some things have been computed for the selected subgroups.
|
| 829 |
else:
|
|
@@ -832,14 +812,12 @@ class nPMIStatisticsCacheClass:
|
|
| 832 |
joint_npmi_df, subgroup_dict = self.prepare_joint_npmi_df(
|
| 833 |
subgroup_pair, subgroup_files
|
| 834 |
)
|
| 835 |
-
|
| 836 |
-
|
| 837 |
-
|
| 838 |
-
|
| 839 |
-
|
| 840 |
-
|
| 841 |
-
with open(joint_npmi_fid, "w+") as f:
|
| 842 |
-
joint_npmi_df.to_csv(f)
|
| 843 |
else:
|
| 844 |
joint_npmi_df = pd.DataFrame()
|
| 845 |
logs.info("The joint npmi df is")
|
|
@@ -881,7 +859,7 @@ class nPMIStatisticsCacheClass:
|
|
| 881 |
subgroup_dict[subgroup] = cached_results
|
| 882 |
logs.info("Calculating for subgroup list")
|
| 883 |
joint_npmi_df, subgroup_dict = self.do_npmi(subgroup_pair, subgroup_dict)
|
| 884 |
-
return joint_npmi_df, subgroup_dict
|
| 885 |
|
| 886 |
# TODO: Update pairwise assumption
|
| 887 |
def do_npmi(self, subgroup_pair, subgroup_dict):
|
|
@@ -892,7 +870,6 @@ class nPMIStatisticsCacheClass:
|
|
| 892 |
:return: Selected identity term's co-occurrence counts with
|
| 893 |
other words, pmi per word, and nPMI per word.
|
| 894 |
"""
|
| 895 |
-
no_results = False
|
| 896 |
logs.info("Initializing npmi class")
|
| 897 |
npmi_obj = self.set_npmi_obj()
|
| 898 |
# Canonical ordering used
|
|
@@ -900,26 +877,18 @@ class nPMIStatisticsCacheClass:
|
|
| 900 |
# Calculating nPMI statistics
|
| 901 |
for subgroup in subgroup_pair:
|
| 902 |
# If the subgroup data is already computed, grab it.
|
| 903 |
-
# TODO: Should we set idx and column names similarly to
|
| 904 |
-
# how we set them for cached files?
|
| 905 |
if subgroup not in subgroup_dict:
|
| 906 |
logs.info("Calculating statistics for %s" % subgroup)
|
| 907 |
vocab_cooc_df, pmi_df, npmi_df = npmi_obj.calc_metrics(subgroup)
|
| 908 |
-
|
| 909 |
-
|
| 910 |
-
|
| 911 |
-
|
| 912 |
-
|
| 913 |
-
|
| 914 |
-
|
| 915 |
-
|
| 916 |
-
else:
|
| 917 |
-
# Pair the subgroups together, indexed by all words that
|
| 918 |
-
# co-occur between them.
|
| 919 |
-
logs.info("Computing pairwise npmi bias")
|
| 920 |
-
paired_results = npmi_obj.calc_paired_metrics(subgroup_pair, subgroup_dict)
|
| 921 |
-
UI_results = make_npmi_fig(paired_results, subgroup_pair)
|
| 922 |
-
return UI_results.dropna(), subgroup_dict
|
| 923 |
|
| 924 |
def set_npmi_obj(self):
|
| 925 |
"""
|
|
@@ -993,9 +962,11 @@ class nPMIStatisticsCacheClass:
|
|
| 993 |
def get_available_terms(self):
|
| 994 |
return self.load_or_prepare_npmi_terms()
|
| 995 |
|
|
|
|
| 996 |
def dummy(doc):
|
| 997 |
return doc
|
| 998 |
|
|
|
|
| 999 |
def count_vocab_frequencies(tokenized_df):
|
| 1000 |
"""
|
| 1001 |
Based on an input pandas DataFrame with a 'text' column,
|
|
@@ -1010,7 +981,9 @@ def count_vocab_frequencies(tokenized_df):
|
|
| 1010 |
)
|
| 1011 |
# We do this to calculate per-word statistics
|
| 1012 |
# Fast calculation of single word counts
|
| 1013 |
-
logs.info(
|
|
|
|
|
|
|
| 1014 |
cvec.fit(tokenized_df[TOKENIZED_FIELD])
|
| 1015 |
document_matrix = cvec.transform(tokenized_df[TOKENIZED_FIELD])
|
| 1016 |
batches = np.linspace(0, tokenized_df.shape[0], _NUM_VOCAB_BATCHES).astype(int)
|
|
@@ -1031,6 +1004,7 @@ def count_vocab_frequencies(tokenized_df):
|
|
| 1031 |
word_count_df.index.name = WORD
|
| 1032 |
return word_count_df
|
| 1033 |
|
|
|
|
| 1034 |
def calc_p_word(word_count_df):
|
| 1035 |
# p(word)
|
| 1036 |
word_count_df[PROP] = word_count_df[CNT] / float(sum(word_count_df[CNT]))
|
|
@@ -1041,8 +1015,7 @@ def calc_p_word(word_count_df):
|
|
| 1041 |
|
| 1042 |
def filter_vocab(vocab_counts_df):
|
| 1043 |
# TODO: Add warnings (which words are missing) to log file?
|
| 1044 |
-
filtered_vocab_counts_df = vocab_counts_df.drop(_CLOSED_CLASS,
|
| 1045 |
-
errors="ignore")
|
| 1046 |
filtered_count = filtered_vocab_counts_df[CNT]
|
| 1047 |
filtered_count_denom = float(sum(filtered_vocab_counts_df[CNT]))
|
| 1048 |
filtered_vocab_counts_df[PROP] = filtered_count / filtered_count_denom
|
|
@@ -1051,19 +1024,23 @@ def filter_vocab(vocab_counts_df):
|
|
| 1051 |
|
| 1052 |
## Figures ##
|
| 1053 |
|
|
|
|
| 1054 |
def write_plotly(fig, fid):
|
| 1055 |
write_json(plotly.io.to_json(fig), fid)
|
| 1056 |
|
|
|
|
| 1057 |
def read_plotly(fid):
|
| 1058 |
fig = plotly.io.from_json(json.load(open(fid, encoding="utf-8")))
|
| 1059 |
return fig
|
| 1060 |
|
|
|
|
| 1061 |
def make_fig_lengths(tokenized_df, length_field):
|
| 1062 |
-
fig_tok_length =
|
| 1063 |
-
|
| 1064 |
-
)
|
| 1065 |
return fig_tok_length
|
| 1066 |
|
|
|
|
| 1067 |
def make_fig_labels(label_df, label_names, label_field):
|
| 1068 |
labels = label_df[label_field].unique()
|
| 1069 |
label_sums = [len(label_df[label_df[label_field] == label]) for label in labels]
|
|
@@ -1144,89 +1121,6 @@ def make_zipf_fig(vocab_counts_df, z):
|
|
| 1144 |
return fig
|
| 1145 |
|
| 1146 |
|
| 1147 |
-
def make_tree_plot(node_list, text_dset):
|
| 1148 |
-
nid_map = dict([(node["nid"], nid) for nid, node in enumerate(node_list)])
|
| 1149 |
-
|
| 1150 |
-
for nid, node in enumerate(node_list):
|
| 1151 |
-
node["label"] = node.get(
|
| 1152 |
-
"label",
|
| 1153 |
-
f"{nid:2d} - {node['weight']:5d} items <br>"
|
| 1154 |
-
+ "<br>".join(
|
| 1155 |
-
[
|
| 1156 |
-
"> " + txt[:64] + ("..." if len(txt) >= 63 else "")
|
| 1157 |
-
for txt in list(
|
| 1158 |
-
set(text_dset.select(node["example_ids"])[OUR_TEXT_FIELD])
|
| 1159 |
-
)[:5]
|
| 1160 |
-
]
|
| 1161 |
-
),
|
| 1162 |
-
)
|
| 1163 |
-
|
| 1164 |
-
# make plot nodes
|
| 1165 |
-
# TODO: something more efficient than set to remove duplicates
|
| 1166 |
-
labels = [node["label"] for node in node_list]
|
| 1167 |
-
|
| 1168 |
-
root = node_list[0]
|
| 1169 |
-
root["X"] = 0
|
| 1170 |
-
root["Y"] = 0
|
| 1171 |
-
|
| 1172 |
-
def rec_make_coordinates(node):
|
| 1173 |
-
total_weight = 0
|
| 1174 |
-
add_weight = len(node["example_ids"]) - sum(
|
| 1175 |
-
[child["weight"] for child in node["children"]]
|
| 1176 |
-
)
|
| 1177 |
-
for child in node["children"]:
|
| 1178 |
-
child["X"] = node["X"] + total_weight
|
| 1179 |
-
child["Y"] = node["Y"] - 1
|
| 1180 |
-
total_weight += child["weight"] + add_weight / len(node["children"])
|
| 1181 |
-
rec_make_coordinates(child)
|
| 1182 |
-
|
| 1183 |
-
rec_make_coordinates(root)
|
| 1184 |
-
|
| 1185 |
-
E = [] # list of edges
|
| 1186 |
-
Xn = []
|
| 1187 |
-
Yn = []
|
| 1188 |
-
Xe = []
|
| 1189 |
-
Ye = []
|
| 1190 |
-
for nid, node in enumerate(node_list):
|
| 1191 |
-
Xn += [node["X"]]
|
| 1192 |
-
Yn += [node["Y"]]
|
| 1193 |
-
for child in node["children"]:
|
| 1194 |
-
E += [(nid, nid_map[child["nid"]])]
|
| 1195 |
-
Xe += [node["X"], child["X"], None]
|
| 1196 |
-
Ye += [node["Y"], child["Y"], None]
|
| 1197 |
-
|
| 1198 |
-
# make figure
|
| 1199 |
-
fig = go.Figure()
|
| 1200 |
-
fig.add_trace(
|
| 1201 |
-
go.Scatter(
|
| 1202 |
-
x=Xe,
|
| 1203 |
-
y=Ye,
|
| 1204 |
-
mode="lines",
|
| 1205 |
-
line=dict(color="rgb(210,210,210)", width=1),
|
| 1206 |
-
hoverinfo="none",
|
| 1207 |
-
)
|
| 1208 |
-
)
|
| 1209 |
-
fig.add_trace(
|
| 1210 |
-
go.Scatter(
|
| 1211 |
-
x=Xn,
|
| 1212 |
-
y=Yn,
|
| 1213 |
-
mode="markers",
|
| 1214 |
-
name="nodes",
|
| 1215 |
-
marker=dict(
|
| 1216 |
-
symbol="circle-dot",
|
| 1217 |
-
size=18,
|
| 1218 |
-
color="#6175c1",
|
| 1219 |
-
line=dict(color="rgb(50,50,50)", width=1)
|
| 1220 |
-
# '#DB4551',
|
| 1221 |
-
),
|
| 1222 |
-
text=labels,
|
| 1223 |
-
hoverinfo="text",
|
| 1224 |
-
opacity=0.8,
|
| 1225 |
-
)
|
| 1226 |
-
)
|
| 1227 |
-
return fig
|
| 1228 |
-
|
| 1229 |
-
|
| 1230 |
## Input/Output ###
|
| 1231 |
|
| 1232 |
|
|
@@ -1280,6 +1174,7 @@ def write_json(json_dict, json_fid):
|
|
| 1280 |
with open(json_fid, "w", encoding="utf-8") as f:
|
| 1281 |
json.dump(json_dict, f)
|
| 1282 |
|
|
|
|
| 1283 |
def write_subgroup_npmi_data(subgroup, subgroup_dict, subgroup_files):
|
| 1284 |
"""
|
| 1285 |
Saves the calculated nPMI statistics to their output files.
|
|
@@ -1299,6 +1194,7 @@ def write_subgroup_npmi_data(subgroup, subgroup_dict, subgroup_files):
|
|
| 1299 |
with open(subgroup_cooc_fid, "w+") as f:
|
| 1300 |
subgroup_cooc_df.to_csv(f)
|
| 1301 |
|
|
|
|
| 1302 |
def write_zipf_data(z, zipf_fid):
|
| 1303 |
zipf_dict = {}
|
| 1304 |
zipf_dict["xmin"] = int(z.xmin)
|
|
@@ -1310,4 +1206,3 @@ def write_zipf_data(z, zipf_fid):
|
|
| 1310 |
zipf_dict["uniq_ranks"] = [int(rank) for rank in z.uniq_ranks]
|
| 1311 |
with open(zipf_fid, "w+", encoding="utf-8") as f:
|
| 1312 |
json.dump(zipf_dict, f)
|
| 1313 |
-
|
|
|
|
| 15 |
import json
|
| 16 |
import logging
|
| 17 |
import statistics
|
|
|
|
| 18 |
from os import mkdir
|
| 19 |
from os.path import exists, isdir
|
| 20 |
from os.path import join as pjoin
|
| 21 |
|
| 22 |
+
import matplotlib.pyplot as plt
|
| 23 |
+
import matplotlib.image as mpimg
|
| 24 |
import nltk
|
| 25 |
import numpy as np
|
| 26 |
import pandas as pd
|
|
|
|
| 29 |
import plotly.figure_factory as ff
|
| 30 |
import plotly.graph_objects as go
|
| 31 |
import pyarrow.feather as feather
|
|
|
|
|
|
|
| 32 |
import seaborn as sns
|
| 33 |
+
import torch
|
| 34 |
from datasets import load_from_disk
|
| 35 |
from nltk.corpus import stopwords
|
| 36 |
from sklearn.feature_extraction.text import CountVectorizer
|
| 37 |
|
| 38 |
+
from .dataset_utils import (CNT, DEDUP_TOT, EMBEDDING_FIELD, LENGTH_FIELD,
|
| 39 |
+
OUR_LABEL_FIELD, OUR_TEXT_FIELD, PROP,
|
| 40 |
+
TEXT_NAN_CNT, TOKENIZED_FIELD, TOT_OPEN_WORDS,
|
| 41 |
+
TOT_WORDS, TXT_LEN, VOCAB, WORD, extract_field,
|
| 42 |
+
load_truncated_dataset)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
from .embeddings import Embeddings
|
| 44 |
from .npmi import nPMI
|
| 45 |
from .zipf import Zipf
|
|
|
|
| 138 |
_TOP_N = 100
|
| 139 |
_CVEC = CountVectorizer(token_pattern="(?u)\\b\\w+\\b", lowercase=True)
|
| 140 |
|
| 141 |
+
|
| 142 |
class DatasetStatisticsCacheClass:
|
| 143 |
def __init__(
|
| 144 |
self,
|
|
|
|
| 237 |
# path to the directory used for caching
|
| 238 |
if not isinstance(text_field, str):
|
| 239 |
text_field = "-".join(text_field)
|
| 240 |
+
# if isinstance(label_field, str):
|
| 241 |
# label_field = label_field
|
| 242 |
+
# else:
|
| 243 |
# label_field = "-".join(label_field)
|
| 244 |
self.cache_path = pjoin(
|
| 245 |
self.cache_dir,
|
| 246 |
+
f"{dset_name}_{dset_config}_{split_name}_{text_field}", # {label_field},
|
| 247 |
)
|
| 248 |
if not isdir(self.cache_path):
|
| 249 |
logs.warning("Creating cache directory %s." % self.cache_path)
|
|
|
|
| 272 |
# Needed for UI
|
| 273 |
self.dup_counts_df_fid = pjoin(self.cache_path, "dup_counts_df.feather")
|
| 274 |
# Needed for UI
|
| 275 |
+
self.fig_tok_length_fid = pjoin(self.cache_path, "fig_tok_length.png")
|
| 276 |
|
| 277 |
## General text stats
|
| 278 |
# Needed for UI
|
| 279 |
self.general_stats_json_fid = pjoin(self.cache_path, "general_stats_dict.json")
|
| 280 |
# Needed for UI
|
| 281 |
+
self.sorted_top_vocab_df_fid = pjoin(
|
| 282 |
+
self.cache_path, "sorted_top_vocab.feather"
|
| 283 |
+
)
|
| 284 |
## Zipf cache files
|
| 285 |
# Needed for UI
|
| 286 |
self.zipf_fid = pjoin(self.cache_path, "zipf_basic_stats.json")
|
|
|
|
| 292 |
self.node_list_fid = pjoin(self.cache_path, "node_list.th")
|
| 293 |
# Needed for UI
|
| 294 |
self.fig_tree_json_fid = pjoin(self.cache_path, "fig_tree.json")
|
|
|
|
| 295 |
|
| 296 |
self.live = False
|
| 297 |
|
|
|
|
| 331 |
and exists(self.dup_counts_df_fid)
|
| 332 |
and exists(self.sorted_top_vocab_df_fid)
|
| 333 |
):
|
| 334 |
+
logs.info("Loading cached general stats")
|
| 335 |
self.load_general_stats()
|
| 336 |
else:
|
| 337 |
if not self.live:
|
| 338 |
+
logs.info("Preparing general stats")
|
| 339 |
self.prepare_general_stats()
|
| 340 |
if save:
|
| 341 |
write_df(self.sorted_top_vocab_df, self.sorted_top_vocab_df_fid)
|
| 342 |
write_df(self.dup_counts_df, self.dup_counts_df_fid)
|
| 343 |
write_json(self.general_stats_dict, self.general_stats_json_fid)
|
| 344 |
|
|
|
|
| 345 |
def load_or_prepare_text_lengths(self, save=True):
|
| 346 |
"""
|
| 347 |
The text length widget relies on this function, which provides
|
|
|
|
| 353 |
|
| 354 |
"""
|
| 355 |
# Text length figure
|
| 356 |
+
if self.use_cache and exists(self.fig_tok_length_fid):
|
| 357 |
self.fig_tok_length_png = mpimg.imread(self.fig_tok_length_fid)
|
|
|
|
| 358 |
else:
|
| 359 |
if not self.live:
|
| 360 |
self.prepare_fig_text_lengths()
|
| 361 |
if save:
|
| 362 |
+
self.fig_tok_length.savefig(self.fig_tok_length_fid)
|
|
|
|
| 363 |
# Text length dataframe
|
| 364 |
if self.use_cache and exists(self.length_df_fid):
|
| 365 |
self.length_df = feather.read_feather(self.length_df_fid)
|
|
|
|
| 386 |
if not self.live:
|
| 387 |
if self.tokenized_df is None:
|
| 388 |
self.tokenized_df = self.do_tokenization()
|
| 389 |
+
self.tokenized_df[LENGTH_FIELD] = self.tokenized_df[TOKENIZED_FIELD].apply(
|
| 390 |
+
len
|
|
|
|
|
|
|
|
|
|
| 391 |
)
|
| 392 |
+
self.length_df = self.tokenized_df[
|
| 393 |
+
[LENGTH_FIELD, OUR_TEXT_FIELD]
|
| 394 |
+
].sort_values(by=[LENGTH_FIELD], ascending=True)
|
| 395 |
|
| 396 |
def prepare_text_length_stats(self):
|
| 397 |
if not self.live:
|
| 398 |
+
if (
|
| 399 |
+
self.tokenized_df is None
|
| 400 |
+
or LENGTH_FIELD not in self.tokenized_df.columns
|
| 401 |
+
or self.length_df is None
|
| 402 |
+
):
|
| 403 |
self.prepare_length_df()
|
| 404 |
+
avg_length = sum(self.tokenized_df[LENGTH_FIELD]) / len(
|
| 405 |
+
self.tokenized_df[LENGTH_FIELD]
|
| 406 |
+
)
|
| 407 |
self.avg_length = round(avg_length, 1)
|
| 408 |
std_length = statistics.stdev(self.tokenized_df[LENGTH_FIELD])
|
| 409 |
self.std_length = round(std_length, 1)
|
| 410 |
self.num_uniq_lengths = len(self.length_df["length"].unique())
|
| 411 |
+
self.length_stats_dict = {
|
| 412 |
+
"avg length": self.avg_length,
|
| 413 |
+
"std length": self.std_length,
|
| 414 |
+
"num lengths": self.num_uniq_lengths,
|
| 415 |
+
}
|
| 416 |
|
| 417 |
def prepare_fig_text_lengths(self):
|
| 418 |
if not self.live:
|
| 419 |
+
if (
|
| 420 |
+
self.tokenized_df is None
|
| 421 |
+
or LENGTH_FIELD not in self.tokenized_df.columns
|
| 422 |
+
):
|
| 423 |
self.prepare_length_df()
|
| 424 |
self.fig_tok_length = make_fig_lengths(self.tokenized_df, LENGTH_FIELD)
|
| 425 |
|
| 426 |
+
def load_or_prepare_embeddings(self):
|
| 427 |
+
self.embeddings = Embeddings(self, use_cache=self.use_cache)
|
| 428 |
+
self.embeddings.make_hierarchical_clustering()
|
| 429 |
+
self.node_list = self.embeddings.node_list
|
| 430 |
+
self.fig_tree = self.embeddings.fig_tree
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 431 |
|
| 432 |
# get vocab with word counts
|
| 433 |
def load_or_prepare_vocab(self, save=True):
|
|
|
|
| 437 |
:param
|
| 438 |
:return:
|
| 439 |
"""
|
| 440 |
+
if self.use_cache and exists(self.vocab_counts_df_fid):
|
|
|
|
|
|
|
|
|
|
| 441 |
logs.info("Reading vocab from cache")
|
| 442 |
self.load_vocab()
|
| 443 |
self.vocab_counts_filtered_df = filter_vocab(self.vocab_counts_df)
|
|
|
|
| 484 |
write_df(self.dup_counts_df, self.dup_counts_df_fid)
|
| 485 |
|
| 486 |
def load_general_stats(self):
|
| 487 |
+
self.general_stats_dict = json.load(
|
| 488 |
+
open(self.general_stats_json_fid, encoding="utf-8")
|
| 489 |
+
)
|
| 490 |
with open(self.sorted_top_vocab_df_fid, "rb") as f:
|
| 491 |
self.sorted_top_vocab_df = feather.read_feather(f)
|
| 492 |
self.text_nan_count = self.general_stats_dict[TEXT_NAN_CNT]
|
|
|
|
| 521 |
if not self.live:
|
| 522 |
if self.tokenized_df is None:
|
| 523 |
self.load_or_prepare_tokenized_df()
|
| 524 |
+
dup_df = self.tokenized_df[self.tokenized_df.duplicated([OUR_TEXT_FIELD])]
|
|
|
|
| 525 |
self.dup_counts_df = pd.DataFrame(
|
| 526 |
dup_df.pivot_table(
|
| 527 |
columns=[OUR_TEXT_FIELD], aggfunc="size"
|
|
|
|
| 561 |
write_json({"dset peek": self.dset_peek}, self.dset_peek_json_fid)
|
| 562 |
|
| 563 |
def load_or_prepare_tokenized_df(self, save=True):
|
| 564 |
+
if self.use_cache and exists(self.tokenized_df_fid):
|
| 565 |
self.tokenized_df = feather.read_feather(self.tokenized_df_fid)
|
| 566 |
else:
|
| 567 |
if not self.live:
|
|
|
|
| 573 |
write_df(self.tokenized_df, self.tokenized_df_fid)
|
| 574 |
|
| 575 |
def load_or_prepare_text_dset(self, save=True):
|
| 576 |
+
if self.use_cache and exists(self.text_dset_fid):
|
| 577 |
# load extracted text
|
| 578 |
self.text_dset = load_from_disk(self.text_dset_fid)
|
| 579 |
logs.warning("Loaded dataset from disk")
|
|
|
|
| 691 |
zipf_dict = json.load(f)
|
| 692 |
self.z = Zipf()
|
| 693 |
self.z.load(zipf_dict)
|
|
|
|
|
|
|
| 694 |
self.zipf_fig = read_plotly(self.zipf_fig_fid)
|
| 695 |
elif self.use_cache and exists(self.zipf_fid):
|
| 696 |
# TODO: Read zipf data so that the vocab is there.
|
|
|
|
| 753 |
and exists(self.npmi_terms_fid)
|
| 754 |
and json.load(open(self.npmi_terms_fid))["available terms"] != []
|
| 755 |
):
|
| 756 |
+
available_terms = json.load(open(self.npmi_terms_fid))["available terms"]
|
| 757 |
else:
|
| 758 |
+
true_false = [
|
| 759 |
+
term in self.dstats.vocab_counts_df.index for term in self.termlist
|
| 760 |
+
]
|
| 761 |
+
word_list_tmp = [x for x, y in zip(self.termlist, true_false) if y]
|
| 762 |
+
true_false_counts = [
|
| 763 |
+
self.dstats.vocab_counts_df.loc[word, CNT] >= self.min_vocab_count
|
| 764 |
+
for word in word_list_tmp
|
| 765 |
+
]
|
| 766 |
+
available_terms = [
|
| 767 |
+
word for word, y in zip(word_list_tmp, true_false_counts) if y
|
| 768 |
+
]
|
| 769 |
+
logs.info(available_terms)
|
| 770 |
+
with open(self.npmi_terms_fid, "w+") as f:
|
| 771 |
+
json.dump({"available terms": available_terms}, f)
|
| 772 |
+
self.available_terms = available_terms
|
| 773 |
+
return available_terms
|
| 774 |
+
|
| 775 |
+
def load_or_prepare_joint_npmi(self, subgroup_pair):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 776 |
"""
|
| 777 |
Run on-the fly, while the app is already open,
|
| 778 |
as it depends on the subgroup terms that the user chooses
|
|
|
|
| 797 |
# When everything is already computed for the selected subgroups.
|
| 798 |
logs.info("Loading cached joint npmi")
|
| 799 |
joint_npmi_df = self.load_joint_npmi_df(joint_npmi_fid)
|
| 800 |
+
npmi_display_cols = [
|
| 801 |
+
"npmi-bias",
|
| 802 |
+
subgroup1 + "-npmi",
|
| 803 |
+
subgroup2 + "-npmi",
|
| 804 |
+
subgroup1 + "-count",
|
| 805 |
+
subgroup2 + "-count",
|
| 806 |
+
]
|
| 807 |
joint_npmi_df = joint_npmi_df[npmi_display_cols]
|
| 808 |
# When maybe some things have been computed for the selected subgroups.
|
| 809 |
else:
|
|
|
|
| 812 |
joint_npmi_df, subgroup_dict = self.prepare_joint_npmi_df(
|
| 813 |
subgroup_pair, subgroup_files
|
| 814 |
)
|
| 815 |
+
# Cache new results
|
| 816 |
+
logs.info("Writing out.")
|
| 817 |
+
for subgroup in subgroup_pair:
|
| 818 |
+
write_subgroup_npmi_data(subgroup, subgroup_dict, subgroup_files)
|
| 819 |
+
with open(joint_npmi_fid, "w+") as f:
|
| 820 |
+
joint_npmi_df.to_csv(f)
|
|
|
|
|
|
|
| 821 |
else:
|
| 822 |
joint_npmi_df = pd.DataFrame()
|
| 823 |
logs.info("The joint npmi df is")
|
|
|
|
| 859 |
subgroup_dict[subgroup] = cached_results
|
| 860 |
logs.info("Calculating for subgroup list")
|
| 861 |
joint_npmi_df, subgroup_dict = self.do_npmi(subgroup_pair, subgroup_dict)
|
| 862 |
+
return joint_npmi_df.dropna(), subgroup_dict
|
| 863 |
|
| 864 |
# TODO: Update pairwise assumption
|
| 865 |
def do_npmi(self, subgroup_pair, subgroup_dict):
|
|
|
|
| 870 |
:return: Selected identity term's co-occurrence counts with
|
| 871 |
other words, pmi per word, and nPMI per word.
|
| 872 |
"""
|
|
|
|
| 873 |
logs.info("Initializing npmi class")
|
| 874 |
npmi_obj = self.set_npmi_obj()
|
| 875 |
# Canonical ordering used
|
|
|
|
| 877 |
# Calculating nPMI statistics
|
| 878 |
for subgroup in subgroup_pair:
|
| 879 |
# If the subgroup data is already computed, grab it.
|
| 880 |
+
# TODO: Should we set idx and column names similarly to how we set them for cached files?
|
|
|
|
| 881 |
if subgroup not in subgroup_dict:
|
| 882 |
logs.info("Calculating statistics for %s" % subgroup)
|
| 883 |
vocab_cooc_df, pmi_df, npmi_df = npmi_obj.calc_metrics(subgroup)
|
| 884 |
+
# Store the nPMI information for the current subgroups
|
| 885 |
+
subgroup_dict[subgroup] = (vocab_cooc_df, pmi_df, npmi_df)
|
| 886 |
+
# Pair the subgroups together, indexed by all words that
|
| 887 |
+
# co-occur between them.
|
| 888 |
+
logs.info("Computing pairwise npmi bias")
|
| 889 |
+
paired_results = npmi_obj.calc_paired_metrics(subgroup_pair, subgroup_dict)
|
| 890 |
+
UI_results = make_npmi_fig(paired_results, subgroup_pair)
|
| 891 |
+
return UI_results, subgroup_dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 892 |
|
| 893 |
def set_npmi_obj(self):
|
| 894 |
"""
|
|
|
|
| 962 |
def get_available_terms(self):
|
| 963 |
return self.load_or_prepare_npmi_terms()
|
| 964 |
|
| 965 |
+
|
| 966 |
def dummy(doc):
|
| 967 |
return doc
|
| 968 |
|
| 969 |
+
|
| 970 |
def count_vocab_frequencies(tokenized_df):
|
| 971 |
"""
|
| 972 |
Based on an input pandas DataFrame with a 'text' column,
|
|
|
|
| 981 |
)
|
| 982 |
# We do this to calculate per-word statistics
|
| 983 |
# Fast calculation of single word counts
|
| 984 |
+
logs.info(
|
| 985 |
+
"Fitting dummy tokenization to make matrix using the previous tokenization"
|
| 986 |
+
)
|
| 987 |
cvec.fit(tokenized_df[TOKENIZED_FIELD])
|
| 988 |
document_matrix = cvec.transform(tokenized_df[TOKENIZED_FIELD])
|
| 989 |
batches = np.linspace(0, tokenized_df.shape[0], _NUM_VOCAB_BATCHES).astype(int)
|
|
|
|
| 1004 |
word_count_df.index.name = WORD
|
| 1005 |
return word_count_df
|
| 1006 |
|
| 1007 |
+
|
| 1008 |
def calc_p_word(word_count_df):
|
| 1009 |
# p(word)
|
| 1010 |
word_count_df[PROP] = word_count_df[CNT] / float(sum(word_count_df[CNT]))
|
|
|
|
| 1015 |
|
| 1016 |
def filter_vocab(vocab_counts_df):
|
| 1017 |
# TODO: Add warnings (which words are missing) to log file?
|
| 1018 |
+
filtered_vocab_counts_df = vocab_counts_df.drop(_CLOSED_CLASS, errors="ignore")
|
|
|
|
| 1019 |
filtered_count = filtered_vocab_counts_df[CNT]
|
| 1020 |
filtered_count_denom = float(sum(filtered_vocab_counts_df[CNT]))
|
| 1021 |
filtered_vocab_counts_df[PROP] = filtered_count / filtered_count_denom
|
|
|
|
| 1024 |
|
| 1025 |
## Figures ##
|
| 1026 |
|
| 1027 |
+
|
| 1028 |
def write_plotly(fig, fid):
|
| 1029 |
write_json(plotly.io.to_json(fig), fid)
|
| 1030 |
|
| 1031 |
+
|
| 1032 |
def read_plotly(fid):
|
| 1033 |
fig = plotly.io.from_json(json.load(open(fid, encoding="utf-8")))
|
| 1034 |
return fig
|
| 1035 |
|
| 1036 |
+
|
| 1037 |
def make_fig_lengths(tokenized_df, length_field):
|
| 1038 |
+
fig_tok_length, axs = plt.subplots(figsize=(15, 6), dpi=150)
|
| 1039 |
+
sns.histplot(data=tokenized_df[length_field], kde=True, bins=100, ax=axs)
|
| 1040 |
+
sns.rugplot(data=tokenized_df[length_field], ax=axs)
|
| 1041 |
return fig_tok_length
|
| 1042 |
|
| 1043 |
+
|
| 1044 |
def make_fig_labels(label_df, label_names, label_field):
|
| 1045 |
labels = label_df[label_field].unique()
|
| 1046 |
label_sums = [len(label_df[label_df[label_field] == label]) for label in labels]
|
|
|
|
| 1121 |
return fig
|
| 1122 |
|
| 1123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1124 |
## Input/Output ###
|
| 1125 |
|
| 1126 |
|
|
|
|
| 1174 |
with open(json_fid, "w", encoding="utf-8") as f:
|
| 1175 |
json.dump(json_dict, f)
|
| 1176 |
|
| 1177 |
+
|
| 1178 |
def write_subgroup_npmi_data(subgroup, subgroup_dict, subgroup_files):
|
| 1179 |
"""
|
| 1180 |
Saves the calculated nPMI statistics to their output files.
|
|
|
|
| 1194 |
with open(subgroup_cooc_fid, "w+") as f:
|
| 1195 |
subgroup_cooc_df.to_csv(f)
|
| 1196 |
|
| 1197 |
+
|
| 1198 |
def write_zipf_data(z, zipf_fid):
|
| 1199 |
zipf_dict = {}
|
| 1200 |
zipf_dict["xmin"] = int(z.xmin)
|
|
|
|
| 1206 |
zipf_dict["uniq_ranks"] = [int(rank) for rank in z.uniq_ranks]
|
| 1207 |
with open(zipf_fid, "w+", encoding="utf-8") as f:
|
| 1208 |
json.dump(zipf_dict, f)
|
|
|