bloom_demo / app.py
Narsil's picture
Narsil HF staff
Delete queue.
55d74b4
raw
history blame
3.55 kB
import gradio as gr
import requests
import json
import os
from screenshot import (
before_prompt,
prompt_to_generation,
after_generation,
js_save,
js_load_script,
)
from spaces_info import description, examples, initial_prompt_value
API_URL = os.getenv("API_URL")
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
def query(payload):
print(payload)
response = requests.request("POST", API_URL, json=payload, headers={"Authorization": f"Bearer {HF_API_TOKEN}"})
print(response)
return json.loads(response.content.decode("utf-8"))
def inference(input_sentence, max_length, sample_or_greedy, seed=42):
if sample_or_greedy == "Sample":
parameters = {
"max_new_tokens": max_length,
"top_p": 0.9,
"do_sample": True,
"seed": seed,
"early_stopping": False,
"length_penalty": 0.0,
"eos_token_id": None,
}
else:
parameters = {
"max_new_tokens": max_length,
"do_sample": False,
"seed": seed,
"early_stopping": False,
"length_penalty": 0.0,
"eos_token_id": None,
}
payload = {"inputs": input_sentence, "parameters": parameters,"options" : {"use_cache": False} }
data = query(payload)
if "error" in data:
return (None, None, f"<span style='color:red'>ERROR: {data['error']} </span>")
generation = data[0]["generated_text"].split(input_sentence, 1)[1]
return (
before_prompt
+ input_sentence
+ prompt_to_generation
+ generation
+ after_generation,
data[0]["generated_text"],
"",
)
if __name__ == "__main__":
demo = gr.Blocks()
with demo:
with gr.Row():
gr.Markdown(value=description)
with gr.Row():
with gr.Column():
text = gr.Textbox(
label="Input",
value=" ", # should be set to " " when plugged into a real API
)
tokens = gr.Slider(1, 64, value=32, step=1, label="Tokens to generate")
sampling = gr.Radio(
["Sample", "Greedy"], label="Sample or greedy", value="Sample"
)
sampling2 = gr.Radio(
["Sample 1", "Sample 2", "Sample 3", "Sample 4", "Sample 5"],
value="Sample 1",
label="Sample other generations (only work in 'Sample' mode)",
type="index",
)
with gr.Row():
submit = gr.Button("Submit")
load_image = gr.Button("Generate Image")
with gr.Column():
text_error = gr.Markdown(label="Log information")
text_out = gr.Textbox(label="Output")
display_out = gr.HTML(label="Image")
display_out.set_event_trigger(
"load",
fn=None,
inputs=None,
outputs=None,
no_target=True,
js=js_load_script,
)
with gr.Row():
gr.Examples(examples=examples, inputs=[text, tokens, sampling, sampling2])
submit.click(
inference,
inputs=[text, tokens, sampling, sampling2],
outputs=[display_out, text_out, text_error],
)
load_image.click(fn=None, inputs=None, outputs=None, _js=js_save)
demo.launch()