import io import os from random import sample from pathlib import Path import uvicorn from fastapi import FastAPI, BackgroundTasks, HTTPException, UploadFile, Depends, status from fastapi.staticfiles import StaticFiles from fastapi.middleware.cors import CORSMiddleware from fastapi_utils.tasks import repeat_every import numpy as np import torch from torch import autocast from diffusers import StableDiffusionPipeline, StableDiffusionInpaintPipeline from PIL import Image import gradio as gr import skimage import skimage.measure from utils import * import boto3 import magic import sqlite3 import requests AWS_ACCESS_KEY_ID = os.getenv('AWS_ACCESS_KEY_ID') AWS_SECRET_KEY = os.getenv('AWS_SECRET_KEY') AWS_S3_BUCKET_NAME = os.getenv('AWS_S3_BUCKET_NAME') LIVEBLOCKS_SECRET = os.environ.get("LIVEBLOCKS_SECRET") HF_TOKEN = os.environ.get("API_TOKEN") or True if (AWS_ACCESS_KEY_ID == None or AWS_SECRET_KEY == None or AWS_S3_BUCKET_NAME == None or LIVEBLOCKS_SECRET == None): raise Exception("Missing environment variables") FILE_TYPES = { 'image/png': 'png', 'image/jpeg': 'jpg', } DB_PATH = Path("rooms.db") app = FastAPI() print("DB_PATH", DB_PATH) def get_db(): db = sqlite3.connect(DB_PATH, check_same_thread=False) db.execute("CREATE TABLE IF NOT EXISTS rooms (id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL, room_id TEXT NOT NULL, users_count INTEGER NOT NULL DEFAULT 0)") print("Connected to database") db.commit() db.row_factory = sqlite3.Row try: yield db finally: db.close() s3 = boto3.client(service_name='s3', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key=AWS_SECRET_KEY) try: SAMPLING_MODE = Image.Resampling.LANCZOS except Exception as e: SAMPLING_MODE = Image.LANCZOS blocks = gr.Blocks().queue() model = {} def get_model(): if "text2img" not in model: text2img = StableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="fp16", torch_dtype=torch.float16, use_auth_token=HF_TOKEN, ).to("cuda") inpaint = StableDiffusionInpaintPipeline( vae=text2img.vae, text_encoder=text2img.text_encoder, tokenizer=text2img.tokenizer, unet=text2img.unet, scheduler=text2img.scheduler, safety_checker=text2img.safety_checker, feature_extractor=text2img.feature_extractor, ).to("cuda") # lms = LMSDiscreteScheduler( # beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear") # img2img = StableDiffusionImg2ImgPipeline( # vae=text2img.vae, # text_encoder=text2img.text_encoder, # tokenizer=text2img.tokenizer, # unet=text2img.unet, # scheduler=lms, # safety_checker=text2img.safety_checker, # feature_extractor=text2img.feature_extractor, # ).to("cuda") # try: # total_memory = torch.cuda.get_device_properties(0).total_memory // ( # 1024 ** 3 # ) # if total_memory <= 5: # inpaint.enable_attention_slicing() # except: # pass model["text2img"] = text2img model["inpaint"] = inpaint # model["img2img"] = img2img return model["text2img"], model["inpaint"] # model["img2img"] # get_model() def run_outpaint( input_image, prompt_text, strength, guidance, step, fill_mode, ): text2img, inpaint = get_model() sel_buffer = np.array(input_image) img = sel_buffer[:, :, 0:3] mask = sel_buffer[:, :, -1] process_size = 512 mask_sum = mask.sum() # if mask_sum >= WHITES: # print("inpaiting with fixed Mask") # mask = np.array(MASK)[:, :, 0] # img, mask = functbl[fill_mode](img, mask) # init_image = Image.fromarray(img) # mask = 255 - mask # mask = skimage.measure.block_reduce(mask, (8, 8), np.max) # mask = mask.repeat(8, axis=0).repeat(8, axis=1) # mask_image = Image.fromarray(mask) # # mask_image=mask_image.filter(ImageFilter.GaussianBlur(radius = 8)) # with autocast("cuda"): # images = inpaint( # prompt=prompt_text, # init_image=init_image.resize( # (process_size, process_size), resample=SAMPLING_MODE # ), # mask_image=mask_image.resize((process_size, process_size)), # strength=strength, # num_inference_steps=step, # guidance_scale=guidance, # ) if mask_sum > 0: print("inpainting") img, mask = functbl[fill_mode](img, mask) init_image = Image.fromarray(img) mask = 255 - mask mask = skimage.measure.block_reduce(mask, (8, 8), np.max) mask = mask.repeat(8, axis=0).repeat(8, axis=1) mask_image = Image.fromarray(mask) # mask_image=mask_image.filter(ImageFilter.GaussianBlur(radius = 8)) with autocast("cuda"): images = inpaint( prompt=prompt_text, init_image=init_image.resize( (process_size, process_size), resample=SAMPLING_MODE ), mask_image=mask_image.resize((process_size, process_size)), strength=strength, num_inference_steps=step, guidance_scale=guidance, ) else: print("text2image") with autocast("cuda"): images = text2img( prompt=prompt_text, height=process_size, width=process_size, ) return images['sample'][0], images["nsfw_content_detected"][0] with blocks as demo: with gr.Row(): with gr.Column(scale=3, min_width=270): sd_prompt = gr.Textbox( label="Prompt", placeholder="input your prompt here", lines=4 ) with gr.Column(scale=2, min_width=150): sd_strength = gr.Slider( label="Strength", minimum=0.0, maximum=1.0, value=0.75, step=0.01 ) with gr.Column(scale=1, min_width=150): sd_step = gr.Number(label="Step", value=50, precision=0) sd_guidance = gr.Number(label="Guidance", value=7.5) with gr.Row(): with gr.Column(scale=4, min_width=600): init_mode = gr.Radio( label="Init mode", choices=[ "patchmatch", "edge_pad", "cv2_ns", "cv2_telea", "gaussian", "perlin", ], value="patchmatch", type="value", ) model_input = gr.Image(label="Input", type="pil", image_mode="RGBA") proceed_button = gr.Button("Proceed", elem_id="proceed") model_output = gr.Image(label="Output") is_nsfw = gr.JSON() proceed_button.click( fn=run_outpaint, inputs=[ model_input, sd_prompt, sd_strength, sd_guidance, sd_step, init_mode, ], outputs=[model_output, is_nsfw], ) blocks.config['dev_mode'] = False def generateAuthToken(): response = requests.get(f"https://liveblocks.io/api/authorize", headers={"Authorization": f"Bearer {LIVEBLOCKS_SECRET}"}) if response.status_code == 200: data = response.json() return data["token"] else: raise Exception(response.status_code, response.text) def get_room_count(room_id: str, jwtToken: str = ''): print("Getting room count" + room_id) response = requests.get( f"https://liveblocks.net/api/v1/room/{room_id}/users", headers={"Authorization": f"Bearer {jwtToken}", "Content-Type": "application/json"}) if response.status_code == 200: res = response.json() if "data" in res: return len(res["data"]) else: return 0 raise Exception("Error getting room count") app = gr.mount_gradio_app(app, blocks, "/gradio", gradio_api_url="http://0.0.0.0:7860/gradio/") app.on_event("startup") @repeat_every(seconds=10) async def sync_rooms(db: sqlite3.Connection = Depends(get_db)): try: jwtToken = generateAuthToken() rooms = db.execute("SELECT * FROM rooms").fetchall() print(rooms) for row in rooms: room_id = row["room_id"] users_count = get_room_count(room_id, jwtToken) print("Updating room", room_id, "with", users_count, "users") cursor = db.cursor() cursor.execute( "UPDATE rooms SET users_count = ? WHERE room_id = ?", (users_count, room_id)) db.commit() data = db.execute("SELECT * FROM rooms").fetchall() print("Rooms updated", data) except Exception as e: print(e) print("Rooms update failed") @app.post('/uploadfile/') async def create_upload_file(background_tasks: BackgroundTasks, file: UploadFile): contents = await file.read() file_size = len(contents) if not 0 < file_size < 2E+06: raise HTTPException( status_code=status.HTTP_400_BAD_REQUEST, detail='Supported file size is less than 2 MB' ) file_type = magic.from_buffer(contents, mime=True) if file_type.lower() not in FILE_TYPES: raise HTTPException( status_code=status.HTTP_400_BAD_REQUEST, detail=f'Unsupported file type {file_type}. Supported types are {FILE_TYPES}' ) temp_file = io.BytesIO() temp_file.write(contents) temp_file.seek(0) s3.upload_fileobj(Fileobj=temp_file, Bucket=AWS_S3_BUCKET_NAME, Key="uploads/" + file.filename, ExtraArgs={"ContentType": file.content_type, "CacheControl": "max-age=31536000"}) temp_file.close() return {"url": f'https://d26smi9133w0oo.cloudfront.net/uploads/{file.filename}', "filename": file.filename} app.mount("/", StaticFiles(directory="../static", html=True), name="static") origins = ["*"] app.add_middleware( CORSMiddleware, allow_origins=origins, allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=7860, log_level="debug", reload=False)