radames commited on
Commit
96c927a
·
unverified ·
1 Parent(s): c3e8635

backend + frontend

Browse files
Files changed (32) hide show
  1. packages.txt +32 -0
  2. requirements.txt +12 -8
  3. run.py +3 -2
  4. stablediffusion-infinity/.gitignore +8 -0
  5. stablediffusion-infinity/.gitmodules +3 -0
  6. stablediffusion-infinity/LICENSE +201 -0
  7. stablediffusion-infinity/PyPatchMatch/.gitignore +3 -0
  8. stablediffusion-infinity/PyPatchMatch/LICENSE +21 -0
  9. stablediffusion-infinity/PyPatchMatch/Makefile +54 -0
  10. stablediffusion-infinity/PyPatchMatch/README.md +64 -0
  11. stablediffusion-infinity/PyPatchMatch/csrc/inpaint.cpp +234 -0
  12. stablediffusion-infinity/PyPatchMatch/csrc/inpaint.h +27 -0
  13. stablediffusion-infinity/PyPatchMatch/csrc/masked_image.cpp +138 -0
  14. stablediffusion-infinity/PyPatchMatch/csrc/masked_image.h +112 -0
  15. stablediffusion-infinity/PyPatchMatch/csrc/nnf.cpp +268 -0
  16. stablediffusion-infinity/PyPatchMatch/csrc/nnf.h +133 -0
  17. stablediffusion-infinity/PyPatchMatch/csrc/pyinterface.cpp +107 -0
  18. stablediffusion-infinity/PyPatchMatch/csrc/pyinterface.h +38 -0
  19. stablediffusion-infinity/PyPatchMatch/examples/.gitignore +2 -0
  20. stablediffusion-infinity/PyPatchMatch/examples/cpp_example.cpp +31 -0
  21. stablediffusion-infinity/PyPatchMatch/examples/cpp_example_run.sh +18 -0
  22. stablediffusion-infinity/PyPatchMatch/examples/images/forest.bmp +0 -0
  23. stablediffusion-infinity/PyPatchMatch/examples/images/forest_pruned.bmp +0 -0
  24. stablediffusion-infinity/PyPatchMatch/examples/py_example.py +21 -0
  25. stablediffusion-infinity/PyPatchMatch/examples/py_example_global_mask.py +27 -0
  26. stablediffusion-infinity/PyPatchMatch/opencv.pc +11 -0
  27. stablediffusion-infinity/PyPatchMatch/patch_match.py +191 -0
  28. stablediffusion-infinity/app.py +234 -0
  29. stablediffusion-infinity/mask.png +0 -0
  30. stablediffusion-infinity/perlin2d.py +45 -0
  31. stablediffusion-infinity/readme.md +93 -0
  32. stablediffusion-infinity/utils.py +140 -0
packages.txt ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ python3-opencv
2
+ libopencv-dev
3
+ libopencv-core-dev
4
+ pkg-config
5
+ libopencv-imgcodecs-dev
6
+ libopencv-dev
7
+ libopencv-contrib-dev
8
+ build-essential
9
+ cmake
10
+ git
11
+ pkg-config
12
+ libgtk-3-dev
13
+ libavcodec-dev
14
+ libavformat-dev
15
+ libswscale-dev
16
+ libv4l-dev
17
+ libxvidcore-dev
18
+ libx264-dev
19
+ libjpeg-dev
20
+ libpng-dev
21
+ libtiff-dev
22
+ gfortran
23
+ openexr
24
+ libatlas-base-dev
25
+ python3-dev
26
+ python3-numpy
27
+ libtbb2
28
+ libtbb-dev
29
+ libdc1394-22-dev
30
+ libopenexr-dev
31
+ libgstreamer-plugins-base1.0-dev
32
+ libgstreamer1.0-dev
requirements.txt CHANGED
@@ -1,8 +1,12 @@
1
- datasets
2
- flask
3
- flask_cors
4
- flask_expects_json
5
- requests
6
- Pillow
7
- gradio
8
- Flask-APScheduler
 
 
 
 
 
1
+ --extra-index-url https://download.pytorch.org/whl/cu113
2
+ torch
3
+ huggingface_hub
4
+ diffusers
5
+ transformers
6
+ scikit-image
7
+ pillow
8
+ opencv-python-headless
9
+ fastapi
10
+ uvicorn
11
+ httpx
12
+ gradio
run.py CHANGED
@@ -1,3 +1,4 @@
1
- import subprocess
2
 
3
- subprocess.run(["make", "build-all"], shell=False)
 
 
1
+ import os
2
 
3
+ os.system("cd stablediffusion-infinity/PyPatchMatch && make clean && make")
4
+ os.system("cd stablediffusion-infinity && python app.py")
stablediffusion-infinity/.gitignore ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ __pycache__/
2
+ .ipynb_checkpoints/
3
+ build/
4
+ .idea/
5
+ travis.sh
6
+ *.iml
7
+ .token
8
+ libpatchmatch.so
stablediffusion-infinity/.gitmodules ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ [submodule "PyPatchMatch"]
2
+ path = PyPatchMatch
3
+ url = https://github.com/vacancy/PyPatchMatch
stablediffusion-infinity/LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
stablediffusion-infinity/PyPatchMatch/.gitignore ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ /build/
2
+ __pycache__
3
+ *.py[cod]
stablediffusion-infinity/PyPatchMatch/LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2020 Jiayuan Mao
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
stablediffusion-infinity/PyPatchMatch/Makefile ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #
2
+ # Makefile
3
+ # Jiayuan Mao, 2019-01-09 13:59
4
+ #
5
+
6
+ SRC_DIR = csrc
7
+ INC_DIR = csrc
8
+ OBJ_DIR = build/obj
9
+ TARGET = libpatchmatch.so
10
+
11
+ LIB_TARGET = $(TARGET)
12
+ INCLUDE_DIR = -I $(SRC_DIR) -I $(INC_DIR)
13
+
14
+ CXX = $(ENVIRONMENT_OPTIONS) g++
15
+ CXXFLAGS = -std=c++14
16
+ CXXFLAGS += -Ofast -ffast-math -w
17
+ # CXXFLAGS += -g
18
+ CXXFLAGS += $(shell pkg-config --cflags opencv.pc) -fPIC
19
+ CXXFLAGS += $(INCLUDE_DIR)
20
+ LDFLAGS = $(shell pkg-config --cflags --libs opencv.pc) -shared -fPIC
21
+
22
+
23
+ CXXSOURCES = $(shell find $(SRC_DIR)/ -name "*.cpp")
24
+ OBJS = $(addprefix $(OBJ_DIR)/,$(CXXSOURCES:.cpp=.o))
25
+ DEPFILES = $(OBJS:.o=.d)
26
+
27
+ .PHONY: all clean rebuild test
28
+
29
+ all: $(LIB_TARGET)
30
+
31
+ $(OBJ_DIR)/%.o: %.cpp
32
+ @echo "[CC] $< ..."
33
+ @$(CXX) -c $< $(CXXFLAGS) -o $@
34
+
35
+ $(OBJ_DIR)/%.d: %.cpp
36
+ @mkdir -pv $(dir $@)
37
+ @echo "[dep] $< ..."
38
+ @$(CXX) $(INCLUDE_DIR) $(CXXFLAGS) -MM -MT "$(OBJ_DIR)/$(<:.cpp=.o) $(OBJ_DIR)/$(<:.cpp=.d)" "$<" > "$@"
39
+
40
+ sinclude $(DEPFILES)
41
+
42
+ $(LIB_TARGET): $(OBJS)
43
+ @echo "[link] $(LIB_TARGET) ..."
44
+ @$(CXX) $(OBJS) -o $@ $(CXXFLAGS) $(LDFLAGS)
45
+
46
+ clean:
47
+ rm -rf $(OBJ_DIR) $(LIB_TARGET)
48
+
49
+ rebuild:
50
+ +@make clean
51
+ +@make
52
+
53
+ # vim:ft=make
54
+ #
stablediffusion-infinity/PyPatchMatch/README.md ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ PatchMatch based Inpainting
2
+ =====================================
3
+ This library implements the PatchMatch based inpainting algorithm. It provides both C++ and Python interfaces.
4
+ This implementation is heavily based on the implementation by Younesse ANDAM:
5
+ (younesse-cv/PatchMatch)[https://github.com/younesse-cv/PatchMatch], with some bugs fix.
6
+
7
+ Usage
8
+ -------------------------------------
9
+
10
+ You need to first install OpenCV to compile the C++ libraries. Then, run `make` to compile the
11
+ shared library `libpatchmatch.so`.
12
+
13
+ For Python users (example available at `examples/py_example.py`)
14
+
15
+ ```python
16
+ import patch_match
17
+
18
+ image = ... # either a numpy ndarray or a PIL Image object.
19
+ mask = ... # either a numpy ndarray or a PIL Image object.
20
+ result = patch_match.inpaint(image, mask, patch_size=5)
21
+ ```
22
+
23
+ For C++ users (examples available at `examples/cpp_example.cpp`)
24
+
25
+ ```cpp
26
+ #include "inpaint.h"
27
+
28
+ int main() {
29
+ cv::Mat image = ...
30
+ cv::Mat mask = ...
31
+
32
+ cv::Mat result = Inpainting(image, mask, 5).run();
33
+
34
+ return 0;
35
+ }
36
+ ```
37
+
38
+
39
+ README and COPYRIGHT by Younesse ANDAM
40
+ -------------------------------------
41
+ @Author: Younesse ANDAM
42
+
43
+ @Contact: [email protected]
44
+
45
+ Description: This project is a personal implementation of an algorithm called PATCHMATCH that restores missing areas in an image.
46
+ The algorithm is presented in the following paper
47
+ PatchMatch A Randomized Correspondence Algorithm
48
+ for Structural Image Editing
49
+ by C.Barnes,E.Shechtman,A.Finkelstein and Dan B.Goldman
50
+ ACM Transactions on Graphics (Proc. SIGGRAPH), vol.28, aug-2009
51
+
52
+ For more information please refer to
53
+ http://www.cs.princeton.edu/gfx/pubs/Barnes_2009_PAR/index.php
54
+
55
+ Copyright (c) 2010-2011
56
+
57
+
58
+ Requirements
59
+ -------------------------------------
60
+
61
+ To run the project you need to install Opencv library and link it to your project.
62
+ Opencv can be download it here
63
+ http://opencv.org/downloads.html
64
+
stablediffusion-infinity/PyPatchMatch/csrc/inpaint.cpp ADDED
@@ -0,0 +1,234 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include <algorithm>
2
+ #include <iostream>
3
+ #include <opencv2/imgcodecs.hpp>
4
+ #include <opencv2/imgproc.hpp>
5
+ #include <opencv2/highgui.hpp>
6
+
7
+ #include "inpaint.h"
8
+
9
+ namespace {
10
+ static std::vector<double> kDistance2Similarity;
11
+
12
+ void init_kDistance2Similarity() {
13
+ double base[11] = {1.0, 0.99, 0.96, 0.83, 0.38, 0.11, 0.02, 0.005, 0.0006, 0.0001, 0};
14
+ int length = (PatchDistanceMetric::kDistanceScale + 1);
15
+ kDistance2Similarity.resize(length);
16
+ for (int i = 0; i < length; ++i) {
17
+ double t = (double) i / length;
18
+ int j = (int) (100 * t);
19
+ int k = j + 1;
20
+ double vj = (j < 11) ? base[j] : 0;
21
+ double vk = (k < 11) ? base[k] : 0;
22
+ kDistance2Similarity[i] = vj + (100 * t - j) * (vk - vj);
23
+ }
24
+ }
25
+
26
+
27
+ inline void _weighted_copy(const MaskedImage &source, int ys, int xs, cv::Mat &target, int yt, int xt, double weight) {
28
+ if (source.is_masked(ys, xs)) return;
29
+ if (source.is_globally_masked(ys, xs)) return;
30
+
31
+ auto source_ptr = source.get_image(ys, xs);
32
+ auto target_ptr = target.ptr<double>(yt, xt);
33
+
34
+ #pragma unroll
35
+ for (int c = 0; c < 3; ++c)
36
+ target_ptr[c] += static_cast<double>(source_ptr[c]) * weight;
37
+ target_ptr[3] += weight;
38
+ }
39
+ }
40
+
41
+ /**
42
+ * This algorithme uses a version proposed by Xavier Philippeau.
43
+ */
44
+
45
+ Inpainting::Inpainting(cv::Mat image, cv::Mat mask, const PatchDistanceMetric *metric)
46
+ : m_initial(image, mask), m_distance_metric(metric), m_pyramid(), m_source2target(), m_target2source() {
47
+ _initialize_pyramid();
48
+ }
49
+
50
+ Inpainting::Inpainting(cv::Mat image, cv::Mat mask, cv::Mat global_mask, const PatchDistanceMetric *metric)
51
+ : m_initial(image, mask, global_mask), m_distance_metric(metric), m_pyramid(), m_source2target(), m_target2source() {
52
+ _initialize_pyramid();
53
+ }
54
+
55
+ void Inpainting::_initialize_pyramid() {
56
+ auto source = m_initial;
57
+ m_pyramid.push_back(source);
58
+ while (source.size().height > m_distance_metric->patch_size() && source.size().width > m_distance_metric->patch_size()) {
59
+ source = source.downsample();
60
+ m_pyramid.push_back(source);
61
+ }
62
+
63
+ if (kDistance2Similarity.size() == 0) {
64
+ init_kDistance2Similarity();
65
+ }
66
+ }
67
+
68
+ cv::Mat Inpainting::run(bool verbose, bool verbose_visualize, unsigned int random_seed) {
69
+ srand(random_seed);
70
+ const int nr_levels = m_pyramid.size();
71
+
72
+ MaskedImage source, target;
73
+ for (int level = nr_levels - 1; level >= 0; --level) {
74
+ if (verbose) std::cerr << "Inpainting level: " << level << std::endl;
75
+
76
+ source = m_pyramid[level];
77
+
78
+ if (level == nr_levels - 1) {
79
+ target = source.clone();
80
+ target.clear_mask();
81
+ m_source2target = NearestNeighborField(source, target, m_distance_metric);
82
+ m_target2source = NearestNeighborField(target, source, m_distance_metric);
83
+ } else {
84
+ m_source2target = NearestNeighborField(source, target, m_distance_metric, m_source2target);
85
+ m_target2source = NearestNeighborField(target, source, m_distance_metric, m_target2source);
86
+ }
87
+
88
+ if (verbose) std::cerr << "Initialization done." << std::endl;
89
+
90
+ if (verbose_visualize) {
91
+ auto visualize_size = m_initial.size();
92
+ cv::Mat source_visualize(visualize_size, m_initial.image().type());
93
+ cv::resize(source.image(), source_visualize, visualize_size);
94
+ cv::imshow("Source", source_visualize);
95
+ cv::Mat target_visualize(visualize_size, m_initial.image().type());
96
+ cv::resize(target.image(), target_visualize, visualize_size);
97
+ cv::imshow("Target", target_visualize);
98
+ cv::waitKey(0);
99
+ }
100
+
101
+ target = _expectation_maximization(source, target, level, verbose);
102
+ }
103
+
104
+ return target.image();
105
+ }
106
+
107
+ // EM-Like algorithm (see "PatchMatch" - page 6).
108
+ // Returns a double sized target image (unless level = 0).
109
+ MaskedImage Inpainting::_expectation_maximization(MaskedImage source, MaskedImage target, int level, bool verbose) {
110
+ const int nr_iters_em = 1 + 2 * level;
111
+ const int nr_iters_nnf = static_cast<int>(std::min(7, 1 + level));
112
+ const int patch_size = m_distance_metric->patch_size();
113
+
114
+ MaskedImage new_source, new_target;
115
+
116
+ for (int iter_em = 0; iter_em < nr_iters_em; ++iter_em) {
117
+ if (iter_em != 0) {
118
+ m_source2target.set_target(new_target);
119
+ m_target2source.set_source(new_target);
120
+ target = new_target;
121
+ }
122
+
123
+ if (verbose) std::cerr << "EM Iteration: " << iter_em << std::endl;
124
+
125
+ auto size = source.size();
126
+ for (int i = 0; i < size.height; ++i) {
127
+ for (int j = 0; j < size.width; ++j) {
128
+ if (!source.contains_mask(i, j, patch_size)) {
129
+ m_source2target.set_identity(i, j);
130
+ m_target2source.set_identity(i, j);
131
+ }
132
+ }
133
+ }
134
+ if (verbose) std::cerr << " NNF minimization started." << std::endl;
135
+ m_source2target.minimize(nr_iters_nnf);
136
+ m_target2source.minimize(nr_iters_nnf);
137
+ if (verbose) std::cerr << " NNF minimization finished." << std::endl;
138
+
139
+ // Instead of upsizing the final target, we build the last target from the next level source image.
140
+ // Thus, the final target is less blurry (see "Space-Time Video Completion" - page 5).
141
+ bool upscaled = false;
142
+ if (level >= 1 && iter_em == nr_iters_em - 1) {
143
+ new_source = m_pyramid[level - 1];
144
+ new_target = target.upsample(new_source.size().width, new_source.size().height, m_pyramid[level - 1].global_mask());
145
+ upscaled = true;
146
+ } else {
147
+ new_source = m_pyramid[level];
148
+ new_target = target.clone();
149
+ }
150
+
151
+ auto vote = cv::Mat(new_target.size(), CV_64FC4);
152
+ vote.setTo(cv::Scalar::all(0));
153
+
154
+ // Votes for best patch from NNF Source->Target (completeness) and Target->Source (coherence).
155
+ _expectation_step(m_source2target, 1, vote, new_source, upscaled);
156
+ if (verbose) std::cerr << " Expectation source to target finished." << std::endl;
157
+ _expectation_step(m_target2source, 0, vote, new_source, upscaled);
158
+ if (verbose) std::cerr << " Expectation target to source finished." << std::endl;
159
+
160
+ // Compile votes and update pixel values.
161
+ _maximization_step(new_target, vote);
162
+ if (verbose) std::cerr << " Minimization step finished." << std::endl;
163
+ }
164
+
165
+ return new_target;
166
+ }
167
+
168
+ // Expectation step: vote for best estimations of each pixel.
169
+ void Inpainting::_expectation_step(
170
+ const NearestNeighborField &nnf, bool source2target,
171
+ cv::Mat &vote, const MaskedImage &source, bool upscaled
172
+ ) {
173
+ auto source_size = nnf.source_size();
174
+ auto target_size = nnf.target_size();
175
+ const int patch_size = m_distance_metric->patch_size();
176
+
177
+ for (int i = 0; i < source_size.height; ++i) {
178
+ for (int j = 0; j < source_size.width; ++j) {
179
+ if (nnf.source().is_globally_masked(i, j)) continue;
180
+ int yp = nnf.at(i, j, 0), xp = nnf.at(i, j, 1), dp = nnf.at(i, j, 2);
181
+ double w = kDistance2Similarity[dp];
182
+
183
+ for (int di = -patch_size; di <= patch_size; ++di) {
184
+ for (int dj = -patch_size; dj <= patch_size; ++dj) {
185
+ int ys = i + di, xs = j + dj, yt = yp + di, xt = xp + dj;
186
+ if (!(ys >= 0 && ys < source_size.height && xs >= 0 && xs < source_size.width)) continue;
187
+ if (nnf.source().is_globally_masked(ys, xs)) continue;
188
+ if (!(yt >= 0 && yt < target_size.height && xt >= 0 && xt < target_size.width)) continue;
189
+ if (nnf.target().is_globally_masked(yt, xt)) continue;
190
+
191
+ if (!source2target) {
192
+ std::swap(ys, yt);
193
+ std::swap(xs, xt);
194
+ }
195
+
196
+ if (upscaled) {
197
+ for (int uy = 0; uy < 2; ++uy) {
198
+ for (int ux = 0; ux < 2; ++ux) {
199
+ _weighted_copy(source, 2 * ys + uy, 2 * xs + ux, vote, 2 * yt + uy, 2 * xt + ux, w);
200
+ }
201
+ }
202
+ } else {
203
+ _weighted_copy(source, ys, xs, vote, yt, xt, w);
204
+ }
205
+ }
206
+ }
207
+ }
208
+ }
209
+ }
210
+
211
+ // Maximization Step: maximum likelihood of target pixel.
212
+ void Inpainting::_maximization_step(MaskedImage &target, const cv::Mat &vote) {
213
+ auto target_size = target.size();
214
+ for (int i = 0; i < target_size.height; ++i) {
215
+ for (int j = 0; j < target_size.width; ++j) {
216
+ const double *source_ptr = vote.ptr<double>(i, j);
217
+ unsigned char *target_ptr = target.get_mutable_image(i, j);
218
+
219
+ if (target.is_globally_masked(i, j)) {
220
+ continue;
221
+ }
222
+
223
+ if (source_ptr[3] > 0) {
224
+ unsigned char r = cv::saturate_cast<unsigned char>(source_ptr[0] / source_ptr[3]);
225
+ unsigned char g = cv::saturate_cast<unsigned char>(source_ptr[1] / source_ptr[3]);
226
+ unsigned char b = cv::saturate_cast<unsigned char>(source_ptr[2] / source_ptr[3]);
227
+ target_ptr[0] = r, target_ptr[1] = g, target_ptr[2] = b;
228
+ } else {
229
+ target.set_mask(i, j, 0);
230
+ }
231
+ }
232
+ }
233
+ }
234
+
stablediffusion-infinity/PyPatchMatch/csrc/inpaint.h ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <vector>
4
+
5
+ #include "masked_image.h"
6
+ #include "nnf.h"
7
+
8
+ class Inpainting {
9
+ public:
10
+ Inpainting(cv::Mat image, cv::Mat mask, const PatchDistanceMetric *metric);
11
+ Inpainting(cv::Mat image, cv::Mat mask, cv::Mat global_mask, const PatchDistanceMetric *metric);
12
+ cv::Mat run(bool verbose = false, bool verbose_visualize = false, unsigned int random_seed = 1212);
13
+
14
+ private:
15
+ void _initialize_pyramid(void);
16
+ MaskedImage _expectation_maximization(MaskedImage source, MaskedImage target, int level, bool verbose);
17
+ void _expectation_step(const NearestNeighborField &nnf, bool source2target, cv::Mat &vote, const MaskedImage &source, bool upscaled);
18
+ void _maximization_step(MaskedImage &target, const cv::Mat &vote);
19
+
20
+ MaskedImage m_initial;
21
+ std::vector<MaskedImage> m_pyramid;
22
+
23
+ NearestNeighborField m_source2target;
24
+ NearestNeighborField m_target2source;
25
+ const PatchDistanceMetric *m_distance_metric;
26
+ };
27
+
stablediffusion-infinity/PyPatchMatch/csrc/masked_image.cpp ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include "masked_image.h"
2
+ #include <algorithm>
3
+ #include <iostream>
4
+
5
+ const cv::Size MaskedImage::kDownsampleKernelSize = cv::Size(6, 6);
6
+ const int MaskedImage::kDownsampleKernel[6] = {1, 5, 10, 10, 5, 1};
7
+
8
+ bool MaskedImage::contains_mask(int y, int x, int patch_size) const {
9
+ auto mask_size = size();
10
+ for (int dy = -patch_size; dy <= patch_size; ++dy) {
11
+ for (int dx = -patch_size; dx <= patch_size; ++dx) {
12
+ int yy = y + dy, xx = x + dx;
13
+ if (yy >= 0 && yy < mask_size.height && xx >= 0 && xx < mask_size.width) {
14
+ if (is_masked(yy, xx) && !is_globally_masked(yy, xx)) return true;
15
+ }
16
+ }
17
+ }
18
+ return false;
19
+ }
20
+
21
+ MaskedImage MaskedImage::downsample() const {
22
+ const auto &kernel_size = MaskedImage::kDownsampleKernelSize;
23
+ const auto &kernel = MaskedImage::kDownsampleKernel;
24
+
25
+ const auto size = this->size();
26
+ const auto new_size = cv::Size(size.width / 2, size.height / 2);
27
+
28
+ auto ret = MaskedImage(new_size.width, new_size.height);
29
+ if (!m_global_mask.empty()) ret.init_global_mask_mat();
30
+ for (int y = 0; y < size.height - 1; y += 2) {
31
+ for (int x = 0; x < size.width - 1; x += 2) {
32
+ int r = 0, g = 0, b = 0, ksum = 0;
33
+ bool is_gmasked = true;
34
+
35
+ for (int dy = -kernel_size.height / 2 + 1; dy <= kernel_size.height / 2; ++dy) {
36
+ for (int dx = -kernel_size.width / 2 + 1; dx <= kernel_size.width / 2; ++dx) {
37
+ int yy = y + dy, xx = x + dx;
38
+ if (yy >= 0 && yy < size.height && xx >= 0 && xx < size.width) {
39
+ if (!is_globally_masked(yy, xx)) {
40
+ is_gmasked = false;
41
+ }
42
+ if (!is_masked(yy, xx)) {
43
+ auto source_ptr = get_image(yy, xx);
44
+ int k = kernel[kernel_size.height / 2 - 1 + dy] * kernel[kernel_size.width / 2 - 1 + dx];
45
+ r += source_ptr[0] * k, g += source_ptr[1] * k, b += source_ptr[2] * k;
46
+ ksum += k;
47
+ }
48
+ }
49
+ }
50
+ }
51
+
52
+ if (ksum > 0) r /= ksum, g /= ksum, b /= ksum;
53
+
54
+ if (!m_global_mask.empty()) {
55
+ ret.set_global_mask(y / 2, x / 2, is_gmasked);
56
+ }
57
+ if (ksum > 0) {
58
+ auto target_ptr = ret.get_mutable_image(y / 2, x / 2);
59
+ target_ptr[0] = r, target_ptr[1] = g, target_ptr[2] = b;
60
+ ret.set_mask(y / 2, x / 2, 0);
61
+ } else {
62
+ ret.set_mask(y / 2, x / 2, 1);
63
+ }
64
+ }
65
+ }
66
+
67
+ return ret;
68
+ }
69
+
70
+ MaskedImage MaskedImage::upsample(int new_w, int new_h) const {
71
+ const auto size = this->size();
72
+ auto ret = MaskedImage(new_w, new_h);
73
+ if (!m_global_mask.empty()) ret.init_global_mask_mat();
74
+ for (int y = 0; y < new_h; ++y) {
75
+ for (int x = 0; x < new_w; ++x) {
76
+ int yy = y * size.height / new_h;
77
+ int xx = x * size.width / new_w;
78
+
79
+ if (is_globally_masked(yy, xx)) {
80
+ ret.set_global_mask(y, x, 1);
81
+ ret.set_mask(y, x, 1);
82
+ } else {
83
+ if (!m_global_mask.empty()) ret.set_global_mask(y, x, 0);
84
+
85
+ if (is_masked(yy, xx)) {
86
+ ret.set_mask(y, x, 1);
87
+ } else {
88
+ auto source_ptr = get_image(yy, xx);
89
+ auto target_ptr = ret.get_mutable_image(y, x);
90
+ for (int c = 0; c < 3; ++c)
91
+ target_ptr[c] = source_ptr[c];
92
+ ret.set_mask(y, x, 0);
93
+ }
94
+ }
95
+ }
96
+ }
97
+
98
+ return ret;
99
+ }
100
+
101
+ MaskedImage MaskedImage::upsample(int new_w, int new_h, const cv::Mat &new_global_mask) const {
102
+ auto ret = upsample(new_w, new_h);
103
+ ret.set_global_mask_mat(new_global_mask);
104
+ return ret;
105
+ }
106
+
107
+ void MaskedImage::compute_image_gradients() {
108
+ if (m_image_grad_computed) {
109
+ return;
110
+ }
111
+
112
+ const auto size = m_image.size();
113
+ m_image_grady = cv::Mat(size, CV_8UC3);
114
+ m_image_gradx = cv::Mat(size, CV_8UC3);
115
+ m_image_grady = cv::Scalar::all(0);
116
+ m_image_gradx = cv::Scalar::all(0);
117
+
118
+ for (int i = 1; i < size.height - 1; ++i) {
119
+ const auto *ptr = m_image.ptr<unsigned char>(i, 0);
120
+ const auto *ptry1 = m_image.ptr<unsigned char>(i + 1, 0);
121
+ const auto *ptry2 = m_image.ptr<unsigned char>(i - 1, 0);
122
+ const auto *ptrx1 = m_image.ptr<unsigned char>(i, 0) + 3;
123
+ const auto *ptrx2 = m_image.ptr<unsigned char>(i, 0) - 3;
124
+ auto *mptry = m_image_grady.ptr<unsigned char>(i, 0);
125
+ auto *mptrx = m_image_gradx.ptr<unsigned char>(i, 0);
126
+ for (int j = 3; j < size.width * 3 - 3; ++j) {
127
+ mptry[j] = (ptry1[j] / 2 - ptry2[j] / 2) + 128;
128
+ mptrx[j] = (ptrx1[j] / 2 - ptrx2[j] / 2) + 128;
129
+ }
130
+ }
131
+
132
+ m_image_grad_computed = true;
133
+ }
134
+
135
+ void MaskedImage::compute_image_gradients() const {
136
+ const_cast<MaskedImage *>(this)->compute_image_gradients();
137
+ }
138
+
stablediffusion-infinity/PyPatchMatch/csrc/masked_image.h ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <opencv2/core.hpp>
4
+
5
+ class MaskedImage {
6
+ public:
7
+ MaskedImage() : m_image(), m_mask(), m_global_mask(), m_image_grady(), m_image_gradx(), m_image_grad_computed(false) {
8
+ // pass
9
+ }
10
+ MaskedImage(cv::Mat image, cv::Mat mask) : m_image(image), m_mask(mask), m_image_grad_computed(false) {
11
+ // pass
12
+ }
13
+ MaskedImage(cv::Mat image, cv::Mat mask, cv::Mat global_mask) : m_image(image), m_mask(mask), m_global_mask(global_mask), m_image_grad_computed(false) {
14
+ // pass
15
+ }
16
+ MaskedImage(cv::Mat image, cv::Mat mask, cv::Mat global_mask, cv::Mat grady, cv::Mat gradx, bool grad_computed) :
17
+ m_image(image), m_mask(mask), m_global_mask(global_mask),
18
+ m_image_grady(grady), m_image_gradx(gradx), m_image_grad_computed(grad_computed) {
19
+ // pass
20
+ }
21
+ MaskedImage(int width, int height) : m_global_mask(), m_image_grady(), m_image_gradx() {
22
+ m_image = cv::Mat(cv::Size(width, height), CV_8UC3);
23
+ m_image = cv::Scalar::all(0);
24
+
25
+ m_mask = cv::Mat(cv::Size(width, height), CV_8U);
26
+ m_mask = cv::Scalar::all(0);
27
+ }
28
+ inline MaskedImage clone() {
29
+ return MaskedImage(
30
+ m_image.clone(), m_mask.clone(), m_global_mask.clone(),
31
+ m_image_grady.clone(), m_image_gradx.clone(), m_image_grad_computed
32
+ );
33
+ }
34
+
35
+ inline cv::Size size() const {
36
+ return m_image.size();
37
+ }
38
+ inline const cv::Mat &image() const {
39
+ return m_image;
40
+ }
41
+ inline const cv::Mat &mask() const {
42
+ return m_mask;
43
+ }
44
+ inline const cv::Mat &global_mask() const {
45
+ return m_global_mask;
46
+ }
47
+ inline const cv::Mat &grady() const {
48
+ assert(m_image_grad_computed);
49
+ return m_image_grady;
50
+ }
51
+ inline const cv::Mat &gradx() const {
52
+ assert(m_image_grad_computed);
53
+ return m_image_gradx;
54
+ }
55
+
56
+ inline void init_global_mask_mat() {
57
+ m_global_mask = cv::Mat(m_mask.size(), CV_8U);
58
+ m_global_mask.setTo(cv::Scalar(0));
59
+ }
60
+ inline void set_global_mask_mat(const cv::Mat &other) {
61
+ m_global_mask = other;
62
+ }
63
+
64
+ inline bool is_masked(int y, int x) const {
65
+ return static_cast<bool>(m_mask.at<unsigned char>(y, x));
66
+ }
67
+ inline bool is_globally_masked(int y, int x) const {
68
+ return !m_global_mask.empty() && static_cast<bool>(m_global_mask.at<unsigned char>(y, x));
69
+ }
70
+ inline void set_mask(int y, int x, bool value) {
71
+ m_mask.at<unsigned char>(y, x) = static_cast<unsigned char>(value);
72
+ }
73
+ inline void set_global_mask(int y, int x, bool value) {
74
+ m_global_mask.at<unsigned char>(y, x) = static_cast<unsigned char>(value);
75
+ }
76
+ inline void clear_mask() {
77
+ m_mask.setTo(cv::Scalar(0));
78
+ }
79
+
80
+ inline const unsigned char *get_image(int y, int x) const {
81
+ return m_image.ptr<unsigned char>(y, x);
82
+ }
83
+ inline unsigned char *get_mutable_image(int y, int x) {
84
+ return m_image.ptr<unsigned char>(y, x);
85
+ }
86
+
87
+ inline unsigned char get_image(int y, int x, int c) const {
88
+ return m_image.ptr<unsigned char>(y, x)[c];
89
+ }
90
+ inline int get_image_int(int y, int x, int c) const {
91
+ return static_cast<int>(m_image.ptr<unsigned char>(y, x)[c]);
92
+ }
93
+
94
+ bool contains_mask(int y, int x, int patch_size) const;
95
+ MaskedImage downsample() const;
96
+ MaskedImage upsample(int new_w, int new_h) const;
97
+ MaskedImage upsample(int new_w, int new_h, const cv::Mat &new_global_mask) const;
98
+ void compute_image_gradients();
99
+ void compute_image_gradients() const;
100
+
101
+ static const cv::Size kDownsampleKernelSize;
102
+ static const int kDownsampleKernel[6];
103
+
104
+ private:
105
+ cv::Mat m_image;
106
+ cv::Mat m_mask;
107
+ cv::Mat m_global_mask;
108
+ cv::Mat m_image_grady;
109
+ cv::Mat m_image_gradx;
110
+ bool m_image_grad_computed = false;
111
+ };
112
+
stablediffusion-infinity/PyPatchMatch/csrc/nnf.cpp ADDED
@@ -0,0 +1,268 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include <algorithm>
2
+ #include <iostream>
3
+ #include <cmath>
4
+
5
+ #include "masked_image.h"
6
+ #include "nnf.h"
7
+
8
+ /**
9
+ * Nearest-Neighbor Field (see PatchMatch algorithm).
10
+ * This algorithme uses a version proposed by Xavier Philippeau.
11
+ *
12
+ */
13
+
14
+ template <typename T>
15
+ T clamp(T value, T min_value, T max_value) {
16
+ return std::min(std::max(value, min_value), max_value);
17
+ }
18
+
19
+ void NearestNeighborField::_randomize_field(int max_retry, bool reset) {
20
+ auto this_size = source_size();
21
+ for (int i = 0; i < this_size.height; ++i) {
22
+ for (int j = 0; j < this_size.width; ++j) {
23
+ if (m_source.is_globally_masked(i, j)) continue;
24
+
25
+ auto this_ptr = mutable_ptr(i, j);
26
+ int distance = reset ? PatchDistanceMetric::kDistanceScale : this_ptr[2];
27
+ if (distance < PatchDistanceMetric::kDistanceScale) {
28
+ continue;
29
+ }
30
+
31
+ int i_target = 0, j_target = 0;
32
+ for (int t = 0; t < max_retry; ++t) {
33
+ i_target = rand() % this_size.height;
34
+ j_target = rand() % this_size.width;
35
+ if (m_target.is_globally_masked(i_target, j_target)) continue;
36
+
37
+ distance = _distance(i, j, i_target, j_target);
38
+ if (distance < PatchDistanceMetric::kDistanceScale)
39
+ break;
40
+ }
41
+
42
+ this_ptr[0] = i_target, this_ptr[1] = j_target, this_ptr[2] = distance;
43
+ }
44
+ }
45
+ }
46
+
47
+ void NearestNeighborField::_initialize_field_from(const NearestNeighborField &other, int max_retry) {
48
+ const auto &this_size = source_size();
49
+ const auto &other_size = other.source_size();
50
+ double fi = static_cast<double>(this_size.height) / other_size.height;
51
+ double fj = static_cast<double>(this_size.width) / other_size.width;
52
+
53
+ for (int i = 0; i < this_size.height; ++i) {
54
+ for (int j = 0; j < this_size.width; ++j) {
55
+ if (m_source.is_globally_masked(i, j)) continue;
56
+
57
+ int ilow = static_cast<int>(std::min(i / fi, static_cast<double>(other_size.height - 1)));
58
+ int jlow = static_cast<int>(std::min(j / fj, static_cast<double>(other_size.width - 1)));
59
+ auto this_value = mutable_ptr(i, j);
60
+ auto other_value = other.ptr(ilow, jlow);
61
+
62
+ this_value[0] = static_cast<int>(other_value[0] * fi);
63
+ this_value[1] = static_cast<int>(other_value[1] * fj);
64
+ this_value[2] = _distance(i, j, this_value[0], this_value[1]);
65
+ }
66
+ }
67
+
68
+ _randomize_field(max_retry, false);
69
+ }
70
+
71
+ void NearestNeighborField::minimize(int nr_pass) {
72
+ const auto &this_size = source_size();
73
+ while (nr_pass--) {
74
+ for (int i = 0; i < this_size.height; ++i)
75
+ for (int j = 0; j < this_size.width; ++j) {
76
+ if (m_source.is_globally_masked(i, j)) continue;
77
+ if (at(i, j, 2) > 0) _minimize_link(i, j, +1);
78
+ }
79
+ for (int i = this_size.height - 1; i >= 0; --i)
80
+ for (int j = this_size.width - 1; j >= 0; --j) {
81
+ if (m_source.is_globally_masked(i, j)) continue;
82
+ if (at(i, j, 2) > 0) _minimize_link(i, j, -1);
83
+ }
84
+ }
85
+ }
86
+
87
+ void NearestNeighborField::_minimize_link(int y, int x, int direction) {
88
+ const auto &this_size = source_size();
89
+ const auto &this_target_size = target_size();
90
+ auto this_ptr = mutable_ptr(y, x);
91
+
92
+ // propagation along the y direction.
93
+ if (y - direction >= 0 && y - direction < this_size.height && !m_source.is_globally_masked(y - direction, x)) {
94
+ int yp = at(y - direction, x, 0) + direction;
95
+ int xp = at(y - direction, x, 1);
96
+ int dp = _distance(y, x, yp, xp);
97
+ if (dp < at(y, x, 2)) {
98
+ this_ptr[0] = yp, this_ptr[1] = xp, this_ptr[2] = dp;
99
+ }
100
+ }
101
+
102
+ // propagation along the x direction.
103
+ if (x - direction >= 0 && x - direction < this_size.width && !m_source.is_globally_masked(y, x - direction)) {
104
+ int yp = at(y, x - direction, 0);
105
+ int xp = at(y, x - direction, 1) + direction;
106
+ int dp = _distance(y, x, yp, xp);
107
+ if (dp < at(y, x, 2)) {
108
+ this_ptr[0] = yp, this_ptr[1] = xp, this_ptr[2] = dp;
109
+ }
110
+ }
111
+
112
+ // random search with a progressive step size.
113
+ int random_scale = (std::min(this_target_size.height, this_target_size.width) - 1) / 2;
114
+ while (random_scale > 0) {
115
+ int yp = this_ptr[0] + (rand() % (2 * random_scale + 1) - random_scale);
116
+ int xp = this_ptr[1] + (rand() % (2 * random_scale + 1) - random_scale);
117
+ yp = clamp(yp, 0, target_size().height - 1);
118
+ xp = clamp(xp, 0, target_size().width - 1);
119
+
120
+ if (m_target.is_globally_masked(yp, xp)) {
121
+ random_scale /= 2;
122
+ }
123
+
124
+ int dp = _distance(y, x, yp, xp);
125
+ if (dp < at(y, x, 2)) {
126
+ this_ptr[0] = yp, this_ptr[1] = xp, this_ptr[2] = dp;
127
+ }
128
+ random_scale /= 2;
129
+ }
130
+ }
131
+
132
+ const int PatchDistanceMetric::kDistanceScale = 65535;
133
+ const int PatchSSDDistanceMetric::kSSDScale = 9 * 255 * 255;
134
+
135
+ namespace {
136
+
137
+ inline int pow2(int i) {
138
+ return i * i;
139
+ }
140
+
141
+ int distance_masked_images(
142
+ const MaskedImage &source, int ys, int xs,
143
+ const MaskedImage &target, int yt, int xt,
144
+ int patch_size
145
+ ) {
146
+ long double distance = 0;
147
+ long double wsum = 0;
148
+
149
+ source.compute_image_gradients();
150
+ target.compute_image_gradients();
151
+
152
+ auto source_size = source.size();
153
+ auto target_size = target.size();
154
+
155
+ for (int dy = -patch_size; dy <= patch_size; ++dy) {
156
+ const int yys = ys + dy, yyt = yt + dy;
157
+
158
+ if (yys <= 0 || yys >= source_size.height - 1 || yyt <= 0 || yyt >= target_size.height - 1) {
159
+ distance += (long double)(PatchSSDDistanceMetric::kSSDScale) * (2 * patch_size + 1);
160
+ wsum += 2 * patch_size + 1;
161
+ continue;
162
+ }
163
+
164
+ const auto *p_si = source.image().ptr<unsigned char>(yys, 0);
165
+ const auto *p_ti = target.image().ptr<unsigned char>(yyt, 0);
166
+ const auto *p_sm = source.mask().ptr<unsigned char>(yys, 0);
167
+ const auto *p_tm = target.mask().ptr<unsigned char>(yyt, 0);
168
+
169
+ const unsigned char *p_sgm = nullptr;
170
+ const unsigned char *p_tgm = nullptr;
171
+ if (!source.global_mask().empty()) {
172
+ p_sgm = source.global_mask().ptr<unsigned char>(yys, 0);
173
+ p_tgm = target.global_mask().ptr<unsigned char>(yyt, 0);
174
+ }
175
+
176
+ const auto *p_sgy = source.grady().ptr<unsigned char>(yys, 0);
177
+ const auto *p_tgy = target.grady().ptr<unsigned char>(yyt, 0);
178
+ const auto *p_sgx = source.gradx().ptr<unsigned char>(yys, 0);
179
+ const auto *p_tgx = target.gradx().ptr<unsigned char>(yyt, 0);
180
+
181
+ for (int dx = -patch_size; dx <= patch_size; ++dx) {
182
+ int xxs = xs + dx, xxt = xt + dx;
183
+ wsum += 1;
184
+
185
+ if (xxs <= 0 || xxs >= source_size.width - 1 || xxt <= 0 || xxt >= source_size.width - 1) {
186
+ distance += PatchSSDDistanceMetric::kSSDScale;
187
+ continue;
188
+ }
189
+
190
+ if (p_sm[xxs] || p_tm[xxt] || (p_sgm && p_sgm[xxs]) || (p_tgm && p_tgm[xxt]) ) {
191
+ distance += PatchSSDDistanceMetric::kSSDScale;
192
+ continue;
193
+ }
194
+
195
+ int ssd = 0;
196
+ for (int c = 0; c < 3; ++c) {
197
+ int s_value = p_si[xxs * 3 + c];
198
+ int t_value = p_ti[xxt * 3 + c];
199
+ int s_gy = p_sgy[xxs * 3 + c];
200
+ int t_gy = p_tgy[xxt * 3 + c];
201
+ int s_gx = p_sgx[xxs * 3 + c];
202
+ int t_gx = p_tgx[xxt * 3 + c];
203
+
204
+ ssd += pow2(static_cast<int>(s_value) - t_value);
205
+ ssd += pow2(static_cast<int>(s_gx) - t_gx);
206
+ ssd += pow2(static_cast<int>(s_gy) - t_gy);
207
+ }
208
+ distance += ssd;
209
+ }
210
+ }
211
+
212
+ distance /= (long double)(PatchSSDDistanceMetric::kSSDScale);
213
+
214
+ int res = int(PatchDistanceMetric::kDistanceScale * distance / wsum);
215
+ if (res < 0 || res > PatchDistanceMetric::kDistanceScale) return PatchDistanceMetric::kDistanceScale;
216
+ return res;
217
+ }
218
+
219
+ }
220
+
221
+ int PatchSSDDistanceMetric::operator ()(const MaskedImage &source, int source_y, int source_x, const MaskedImage &target, int target_y, int target_x) const {
222
+ return distance_masked_images(source, source_y, source_x, target, target_y, target_x, m_patch_size);
223
+ }
224
+
225
+ int DebugPatchSSDDistanceMetric::operator ()(const MaskedImage &source, int source_y, int source_x, const MaskedImage &target, int target_y, int target_x) const {
226
+ fprintf(stderr, "DebugPatchSSDDistanceMetric: %d %d %d %d\n", source.size().width, source.size().height, m_width, m_height);
227
+ return distance_masked_images(source, source_y, source_x, target, target_y, target_x, m_patch_size);
228
+ }
229
+
230
+ int RegularityGuidedPatchDistanceMetricV1::operator ()(const MaskedImage &source, int source_y, int source_x, const MaskedImage &target, int target_y, int target_x) const {
231
+ double dx = remainder(double(source_x - target_x) / source.size().width, m_dx1);
232
+ double dy = remainder(double(source_y - target_y) / source.size().height, m_dy2);
233
+
234
+ double score1 = sqrt(dx * dx + dy *dy) / m_scale;
235
+ if (score1 < 0 || score1 > 1) score1 = 1;
236
+ score1 *= PatchDistanceMetric::kDistanceScale;
237
+
238
+ double score2 = distance_masked_images(source, source_y, source_x, target, target_y, target_x, m_patch_size);
239
+ double score = score1 * m_weight + score2 / (1 + m_weight);
240
+ return static_cast<int>(score / (1 + m_weight));
241
+ }
242
+
243
+ int RegularityGuidedPatchDistanceMetricV2::operator ()(const MaskedImage &source, int source_y, int source_x, const MaskedImage &target, int target_y, int target_x) const {
244
+ if (target_y < 0 || target_y >= target.size().height || target_x < 0 || target_x >= target.size().width)
245
+ return PatchDistanceMetric::kDistanceScale;
246
+
247
+ int source_scale = m_ijmap.size().height / source.size().height;
248
+ int target_scale = m_ijmap.size().height / target.size().height;
249
+
250
+ // fprintf(stderr, "RegularityGuidedPatchDistanceMetricV2 %d %d %d %d\n", source_y * source_scale, m_ijmap.size().height, source_x * source_scale, m_ijmap.size().width);
251
+
252
+ double score1 = PatchDistanceMetric::kDistanceScale;
253
+ if (!source.is_globally_masked(source_y, source_x) && !target.is_globally_masked(target_y, target_x)) {
254
+ auto source_ij = m_ijmap.ptr<float>(source_y * source_scale, source_x * source_scale);
255
+ auto target_ij = m_ijmap.ptr<float>(target_y * target_scale, target_x * target_scale);
256
+
257
+ float di = fabs(source_ij[0] - target_ij[0]); if (di > 0.5) di = 1 - di;
258
+ float dj = fabs(source_ij[1] - target_ij[1]); if (dj > 0.5) dj = 1 - dj;
259
+ score1 = sqrt(di * di + dj *dj) / 0.707;
260
+ if (score1 < 0 || score1 > 1) score1 = 1;
261
+ score1 *= PatchDistanceMetric::kDistanceScale;
262
+ }
263
+
264
+ double score2 = distance_masked_images(source, source_y, source_x, target, target_y, target_x, m_patch_size);
265
+ double score = score1 * m_weight + score2;
266
+ return int(score / (1 + m_weight));
267
+ }
268
+
stablediffusion-infinity/PyPatchMatch/csrc/nnf.h ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <opencv2/core.hpp>
4
+ #include "masked_image.h"
5
+
6
+ class PatchDistanceMetric {
7
+ public:
8
+ PatchDistanceMetric(int patch_size) : m_patch_size(patch_size) {}
9
+ virtual ~PatchDistanceMetric() = default;
10
+
11
+ inline int patch_size() const { return m_patch_size; }
12
+ virtual int operator()(const MaskedImage &source, int source_y, int source_x, const MaskedImage &target, int target_y, int target_x) const = 0;
13
+ static const int kDistanceScale;
14
+
15
+ protected:
16
+ int m_patch_size;
17
+ };
18
+
19
+ class NearestNeighborField {
20
+ public:
21
+ NearestNeighborField() : m_source(), m_target(), m_field(), m_distance_metric(nullptr) {
22
+ // pass
23
+ }
24
+ NearestNeighborField(const MaskedImage &source, const MaskedImage &target, const PatchDistanceMetric *metric, int max_retry = 20)
25
+ : m_source(source), m_target(target), m_distance_metric(metric) {
26
+ m_field = cv::Mat(m_source.size(), CV_32SC3);
27
+ _randomize_field(max_retry);
28
+ }
29
+ NearestNeighborField(const MaskedImage &source, const MaskedImage &target, const PatchDistanceMetric *metric, const NearestNeighborField &other, int max_retry = 20)
30
+ : m_source(source), m_target(target), m_distance_metric(metric) {
31
+ m_field = cv::Mat(m_source.size(), CV_32SC3);
32
+ _initialize_field_from(other, max_retry);
33
+ }
34
+
35
+ const MaskedImage &source() const {
36
+ return m_source;
37
+ }
38
+ const MaskedImage &target() const {
39
+ return m_target;
40
+ }
41
+ inline cv::Size source_size() const {
42
+ return m_source.size();
43
+ }
44
+ inline cv::Size target_size() const {
45
+ return m_target.size();
46
+ }
47
+ inline void set_source(const MaskedImage &source) {
48
+ m_source = source;
49
+ }
50
+ inline void set_target(const MaskedImage &target) {
51
+ m_target = target;
52
+ }
53
+
54
+ inline int *mutable_ptr(int y, int x) {
55
+ return m_field.ptr<int>(y, x);
56
+ }
57
+ inline const int *ptr(int y, int x) const {
58
+ return m_field.ptr<int>(y, x);
59
+ }
60
+
61
+ inline int at(int y, int x, int c) const {
62
+ return m_field.ptr<int>(y, x)[c];
63
+ }
64
+ inline int &at(int y, int x, int c) {
65
+ return m_field.ptr<int>(y, x)[c];
66
+ }
67
+ inline void set_identity(int y, int x) {
68
+ auto ptr = mutable_ptr(y, x);
69
+ ptr[0] = y, ptr[1] = x, ptr[2] = 0;
70
+ }
71
+
72
+ void minimize(int nr_pass);
73
+
74
+ private:
75
+ inline int _distance(int source_y, int source_x, int target_y, int target_x) {
76
+ return (*m_distance_metric)(m_source, source_y, source_x, m_target, target_y, target_x);
77
+ }
78
+
79
+ void _randomize_field(int max_retry = 20, bool reset = true);
80
+ void _initialize_field_from(const NearestNeighborField &other, int max_retry);
81
+ void _minimize_link(int y, int x, int direction);
82
+
83
+ MaskedImage m_source;
84
+ MaskedImage m_target;
85
+ cv::Mat m_field; // { y_target, x_target, distance_scaled }
86
+ const PatchDistanceMetric *m_distance_metric;
87
+ };
88
+
89
+
90
+ class PatchSSDDistanceMetric : public PatchDistanceMetric {
91
+ public:
92
+ using PatchDistanceMetric::PatchDistanceMetric;
93
+ virtual int operator ()(const MaskedImage &source, int source_y, int source_x, const MaskedImage &target, int target_y, int target_x) const;
94
+ static const int kSSDScale;
95
+ };
96
+
97
+ class DebugPatchSSDDistanceMetric : public PatchDistanceMetric {
98
+ public:
99
+ DebugPatchSSDDistanceMetric(int patch_size, int width, int height) : PatchDistanceMetric(patch_size), m_width(width), m_height(height) {}
100
+ virtual int operator ()(const MaskedImage &source, int source_y, int source_x, const MaskedImage &target, int target_y, int target_x) const;
101
+ protected:
102
+ int m_width, m_height;
103
+ };
104
+
105
+ class RegularityGuidedPatchDistanceMetricV1 : public PatchDistanceMetric {
106
+ public:
107
+ RegularityGuidedPatchDistanceMetricV1(int patch_size, double dx1, double dy1, double dx2, double dy2, double weight)
108
+ : PatchDistanceMetric(patch_size), m_dx1(dx1), m_dy1(dy1), m_dx2(dx2), m_dy2(dy2), m_weight(weight) {
109
+
110
+ assert(m_dy1 == 0);
111
+ assert(m_dx2 == 0);
112
+ m_scale = sqrt(m_dx1 * m_dx1 + m_dy2 * m_dy2) / 4;
113
+ }
114
+ virtual int operator ()(const MaskedImage &source, int source_y, int source_x, const MaskedImage &target, int target_y, int target_x) const;
115
+
116
+ protected:
117
+ double m_dx1, m_dy1, m_dx2, m_dy2;
118
+ double m_scale, m_weight;
119
+ };
120
+
121
+ class RegularityGuidedPatchDistanceMetricV2 : public PatchDistanceMetric {
122
+ public:
123
+ RegularityGuidedPatchDistanceMetricV2(int patch_size, cv::Mat ijmap, double weight)
124
+ : PatchDistanceMetric(patch_size), m_ijmap(ijmap), m_weight(weight) {
125
+
126
+ }
127
+ virtual int operator ()(const MaskedImage &source, int source_y, int source_x, const MaskedImage &target, int target_y, int target_x) const;
128
+
129
+ protected:
130
+ cv::Mat m_ijmap;
131
+ double m_width, m_height, m_weight;
132
+ };
133
+
stablediffusion-infinity/PyPatchMatch/csrc/pyinterface.cpp ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include "pyinterface.h"
2
+ #include "inpaint.h"
3
+
4
+ static unsigned int PM_seed = 1212;
5
+ static bool PM_verbose = false;
6
+
7
+ int _dtype_py_to_cv(int dtype_py);
8
+ int _dtype_cv_to_py(int dtype_cv);
9
+ cv::Mat _py_to_cv2(PM_mat_t pymat);
10
+ PM_mat_t _cv2_to_py(cv::Mat cvmat);
11
+
12
+ void PM_set_random_seed(unsigned int seed) {
13
+ PM_seed = seed;
14
+ }
15
+
16
+ void PM_set_verbose(int value) {
17
+ PM_verbose = static_cast<bool>(value);
18
+ }
19
+
20
+ void PM_free_pymat(PM_mat_t pymat) {
21
+ free(pymat.data_ptr);
22
+ }
23
+
24
+ PM_mat_t PM_inpaint(PM_mat_t source_py, PM_mat_t mask_py, int patch_size) {
25
+ cv::Mat source = _py_to_cv2(source_py);
26
+ cv::Mat mask = _py_to_cv2(mask_py);
27
+ auto metric = PatchSSDDistanceMetric(patch_size);
28
+ cv::Mat result = Inpainting(source, mask, &metric).run(PM_verbose, false, PM_seed);
29
+ return _cv2_to_py(result);
30
+ }
31
+
32
+ PM_mat_t PM_inpaint_regularity(PM_mat_t source_py, PM_mat_t mask_py, PM_mat_t ijmap_py, int patch_size, float guide_weight) {
33
+ cv::Mat source = _py_to_cv2(source_py);
34
+ cv::Mat mask = _py_to_cv2(mask_py);
35
+ cv::Mat ijmap = _py_to_cv2(ijmap_py);
36
+
37
+ auto metric = RegularityGuidedPatchDistanceMetricV2(patch_size, ijmap, guide_weight);
38
+ cv::Mat result = Inpainting(source, mask, &metric).run(PM_verbose, false, PM_seed);
39
+ return _cv2_to_py(result);
40
+ }
41
+
42
+ PM_mat_t PM_inpaint2(PM_mat_t source_py, PM_mat_t mask_py, PM_mat_t global_mask_py, int patch_size) {
43
+ cv::Mat source = _py_to_cv2(source_py);
44
+ cv::Mat mask = _py_to_cv2(mask_py);
45
+ cv::Mat global_mask = _py_to_cv2(global_mask_py);
46
+
47
+ auto metric = PatchSSDDistanceMetric(patch_size);
48
+ cv::Mat result = Inpainting(source, mask, global_mask, &metric).run(PM_verbose, false, PM_seed);
49
+ return _cv2_to_py(result);
50
+ }
51
+
52
+ PM_mat_t PM_inpaint2_regularity(PM_mat_t source_py, PM_mat_t mask_py, PM_mat_t global_mask_py, PM_mat_t ijmap_py, int patch_size, float guide_weight) {
53
+ cv::Mat source = _py_to_cv2(source_py);
54
+ cv::Mat mask = _py_to_cv2(mask_py);
55
+ cv::Mat global_mask = _py_to_cv2(global_mask_py);
56
+ cv::Mat ijmap = _py_to_cv2(ijmap_py);
57
+
58
+ auto metric = RegularityGuidedPatchDistanceMetricV2(patch_size, ijmap, guide_weight);
59
+ cv::Mat result = Inpainting(source, mask, global_mask, &metric).run(PM_verbose, false, PM_seed);
60
+ return _cv2_to_py(result);
61
+ }
62
+
63
+ int _dtype_py_to_cv(int dtype_py) {
64
+ switch (dtype_py) {
65
+ case PM_UINT8: return CV_8U;
66
+ case PM_INT8: return CV_8S;
67
+ case PM_UINT16: return CV_16U;
68
+ case PM_INT16: return CV_16S;
69
+ case PM_INT32: return CV_32S;
70
+ case PM_FLOAT32: return CV_32F;
71
+ case PM_FLOAT64: return CV_64F;
72
+ }
73
+
74
+ return CV_8U;
75
+ }
76
+
77
+ int _dtype_cv_to_py(int dtype_cv) {
78
+ switch (dtype_cv) {
79
+ case CV_8U: return PM_UINT8;
80
+ case CV_8S: return PM_INT8;
81
+ case CV_16U: return PM_UINT16;
82
+ case CV_16S: return PM_INT16;
83
+ case CV_32S: return PM_INT32;
84
+ case CV_32F: return PM_FLOAT32;
85
+ case CV_64F: return PM_FLOAT64;
86
+ }
87
+
88
+ return PM_UINT8;
89
+ }
90
+
91
+ cv::Mat _py_to_cv2(PM_mat_t pymat) {
92
+ int dtype = _dtype_py_to_cv(pymat.dtype);
93
+ dtype = CV_MAKETYPE(pymat.dtype, pymat.shape.channels);
94
+ return cv::Mat(cv::Size(pymat.shape.width, pymat.shape.height), dtype, pymat.data_ptr).clone();
95
+ }
96
+
97
+ PM_mat_t _cv2_to_py(cv::Mat cvmat) {
98
+ PM_shape_t shape = {cvmat.size().width, cvmat.size().height, cvmat.channels()};
99
+ int dtype = _dtype_cv_to_py(cvmat.depth());
100
+ size_t dsize = cvmat.total() * cvmat.elemSize();
101
+
102
+ void *data_ptr = reinterpret_cast<void *>(malloc(dsize));
103
+ memcpy(data_ptr, reinterpret_cast<void *>(cvmat.data), dsize);
104
+
105
+ return PM_mat_t {data_ptr, shape, dtype};
106
+ }
107
+
stablediffusion-infinity/PyPatchMatch/csrc/pyinterface.h ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include <opencv2/core.hpp>
2
+ #include <cstdlib>
3
+ #include <cstdio>
4
+ #include <cstring>
5
+
6
+ extern "C" {
7
+
8
+ struct PM_shape_t {
9
+ int width, height, channels;
10
+ };
11
+
12
+ enum PM_dtype_e {
13
+ PM_UINT8,
14
+ PM_INT8,
15
+ PM_UINT16,
16
+ PM_INT16,
17
+ PM_INT32,
18
+ PM_FLOAT32,
19
+ PM_FLOAT64,
20
+ };
21
+
22
+ struct PM_mat_t {
23
+ void *data_ptr;
24
+ PM_shape_t shape;
25
+ int dtype;
26
+ };
27
+
28
+ void PM_set_random_seed(unsigned int seed);
29
+ void PM_set_verbose(int value);
30
+
31
+ void PM_free_pymat(PM_mat_t pymat);
32
+ PM_mat_t PM_inpaint(PM_mat_t image, PM_mat_t mask, int patch_size);
33
+ PM_mat_t PM_inpaint_regularity(PM_mat_t image, PM_mat_t mask, PM_mat_t ijmap, int patch_size, float guide_weight);
34
+ PM_mat_t PM_inpaint2(PM_mat_t image, PM_mat_t mask, PM_mat_t global_mask, int patch_size);
35
+ PM_mat_t PM_inpaint2_regularity(PM_mat_t image, PM_mat_t mask, PM_mat_t global_mask, PM_mat_t ijmap, int patch_size, float guide_weight);
36
+
37
+ } /* extern "C" */
38
+
stablediffusion-infinity/PyPatchMatch/examples/.gitignore ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ /cpp_example.exe
2
+ /images/*recovered.bmp
stablediffusion-infinity/PyPatchMatch/examples/cpp_example.cpp ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include <iostream>
2
+ #include <opencv2/imgcodecs.hpp>
3
+ #include <opencv2/highgui.hpp>
4
+
5
+ #include "masked_image.h"
6
+ #include "nnf.h"
7
+ #include "inpaint.h"
8
+
9
+ int main() {
10
+ auto source = cv::imread("./images/forest_pruned.bmp", cv::IMREAD_COLOR);
11
+
12
+ auto mask = cv::Mat(source.size(), CV_8UC1);
13
+ mask = cv::Scalar::all(0);
14
+ for (int i = 0; i < source.size().height; ++i) {
15
+ for (int j = 0; j < source.size().width; ++j) {
16
+ auto source_ptr = source.ptr<unsigned char>(i, j);
17
+ if (source_ptr[0] == 255 && source_ptr[1] == 255 && source_ptr[2] == 255) {
18
+ mask.at<unsigned char>(i, j) = 1;
19
+ }
20
+ }
21
+ }
22
+
23
+ auto metric = PatchSSDDistanceMetric(3);
24
+ auto result = Inpainting(source, mask, &metric).run(true, true);
25
+ // cv::imwrite("./images/forest_recovered.bmp", result);
26
+ // cv::imshow("Result", result);
27
+ // cv::waitKey();
28
+
29
+ return 0;
30
+ }
31
+
stablediffusion-infinity/PyPatchMatch/examples/cpp_example_run.sh ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #! /bin/bash
2
+ #
3
+ # cpp_example_run.sh
4
+ # Copyright (C) 2020 Jiayuan Mao <[email protected]>
5
+ #
6
+ # Distributed under terms of the MIT license.
7
+ #
8
+
9
+ set -x
10
+
11
+ CFLAGS="-std=c++14 -O2 $(pkg-config --cflags opencv)"
12
+ LDFLAGS="$(pkg-config --libs opencv)"
13
+ g++ $CFLAGS cpp_example.cpp -I../csrc/ -L../ -lpatchmatch $LDFLAGS -o cpp_example.exe
14
+
15
+ export DYLD_LIBRARY_PATH=../:$DYLD_LIBRARY_PATH # For macOS
16
+ export LD_LIBRARY_PATH=../:$LD_LIBRARY_PATH # For Linux
17
+ time ./cpp_example.exe
18
+
stablediffusion-infinity/PyPatchMatch/examples/images/forest.bmp ADDED
stablediffusion-infinity/PyPatchMatch/examples/images/forest_pruned.bmp ADDED
stablediffusion-infinity/PyPatchMatch/examples/py_example.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #! /usr/bin/env python3
2
+ # -*- coding: utf-8 -*-
3
+ # File : test.py
4
+ # Author : Jiayuan Mao
5
+ # Email : [email protected]
6
+ # Date : 01/09/2020
7
+ #
8
+ # Distributed under terms of the MIT license.
9
+
10
+ from PIL import Image
11
+
12
+ import sys
13
+ sys.path.insert(0, '../')
14
+ import patch_match
15
+
16
+
17
+ if __name__ == '__main__':
18
+ source = Image.open('./images/forest_pruned.bmp')
19
+ result = patch_match.inpaint(source, patch_size=3)
20
+ Image.fromarray(result).save('./images/forest_recovered.bmp')
21
+
stablediffusion-infinity/PyPatchMatch/examples/py_example_global_mask.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #! /usr/bin/env python3
2
+ # -*- coding: utf-8 -*-
3
+ # File : test.py
4
+ # Author : Jiayuan Mao
5
+ # Email : [email protected]
6
+ # Date : 01/09/2020
7
+ #
8
+ # Distributed under terms of the MIT license.
9
+
10
+ import numpy as np
11
+ from PIL import Image
12
+
13
+ import sys
14
+ sys.path.insert(0, '../')
15
+ import patch_match
16
+
17
+
18
+ if __name__ == '__main__':
19
+ patch_match.set_verbose(True)
20
+ source = Image.open('./images/forest_pruned.bmp')
21
+ source = np.array(source)
22
+ source[:100, :100] = 255
23
+ global_mask = np.zeros_like(source[..., 0])
24
+ global_mask[:100, :100] = 1
25
+ result = patch_match.inpaint(source, global_mask=global_mask, patch_size=3)
26
+ Image.fromarray(result).save('./images/forest_recovered.bmp')
27
+
stablediffusion-infinity/PyPatchMatch/opencv.pc ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ prefix=/usr
2
+ exec_prefix=${prefix}
3
+ includedir=${prefix}/include
4
+ libdir=${exec_prefix}/lib
5
+
6
+ Name: opencv
7
+ Description: The opencv library
8
+ Version: 2.x.x
9
+ Cflags: -I${includedir}/opencv4
10
+ #Cflags: -I${includedir}/opencv -I${includedir}/opencv2
11
+ Libs: -L${libdir} -lopencv_calib3d -lopencv_imgproc -lopencv_xobjdetect -lopencv_hdf -lopencv_flann -lopencv_core -lopencv_dpm -lopencv_videoio -lopencv_reg -lopencv_objdetect -lopencv_stitching -lopencv_saliency -lopencv_features2d -lopencv_text -lopencv_calib3d -lopencv_line_descriptor -lopencv_superres -lopencv_ml -lopencv_viz -lopencv_optflow -lopencv_videostab -lopencv_bioinspired -lopencv_highgui -lopencv_freetype -lopencv_imgcodecs -lopencv_video -lopencv_photo -lopencv_surface_matching -lopencv_rgbd -lopencv_datasets -lopencv_ximgproc -lopencv_plot -lopencv_face -lopencv_stereo -lopencv_aruco -lopencv_phase_unwrapping -lopencv_bgsegm -lopencv_ccalib -lopencv_imgproc -lopencv_shape -lopencv_xphoto -lopencv_structured_light -lopencv_fuzzy
stablediffusion-infinity/PyPatchMatch/patch_match.py ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #! /usr/bin/env python3
2
+ # -*- coding: utf-8 -*-
3
+ # File : patch_match.py
4
+ # Author : Jiayuan Mao
5
+ # Email : [email protected]
6
+ # Date : 01/09/2020
7
+ #
8
+ # Distributed under terms of the MIT license.
9
+
10
+ import ctypes
11
+ import os.path as osp
12
+ from typing import Optional, Union
13
+
14
+ import numpy as np
15
+ from PIL import Image
16
+
17
+
18
+ __all__ = ['set_random_seed', 'set_verbose', 'inpaint', 'inpaint_regularity']
19
+
20
+
21
+ class CShapeT(ctypes.Structure):
22
+ _fields_ = [
23
+ ('width', ctypes.c_int),
24
+ ('height', ctypes.c_int),
25
+ ('channels', ctypes.c_int),
26
+ ]
27
+
28
+
29
+ class CMatT(ctypes.Structure):
30
+ _fields_ = [
31
+ ('data_ptr', ctypes.c_void_p),
32
+ ('shape', CShapeT),
33
+ ('dtype', ctypes.c_int)
34
+ ]
35
+
36
+
37
+ PMLIB = ctypes.CDLL(osp.join(osp.dirname(__file__), 'libpatchmatch.so'))
38
+
39
+ PMLIB.PM_set_random_seed.argtypes = [ctypes.c_uint]
40
+ PMLIB.PM_set_verbose.argtypes = [ctypes.c_int]
41
+ PMLIB.PM_free_pymat.argtypes = [CMatT]
42
+ PMLIB.PM_inpaint.argtypes = [CMatT, CMatT, ctypes.c_int]
43
+ PMLIB.PM_inpaint.restype = CMatT
44
+ PMLIB.PM_inpaint_regularity.argtypes = [CMatT, CMatT, CMatT, ctypes.c_int, ctypes.c_float]
45
+ PMLIB.PM_inpaint_regularity.restype = CMatT
46
+ PMLIB.PM_inpaint2.argtypes = [CMatT, CMatT, CMatT, ctypes.c_int]
47
+ PMLIB.PM_inpaint2.restype = CMatT
48
+ PMLIB.PM_inpaint2_regularity.argtypes = [CMatT, CMatT, CMatT, CMatT, ctypes.c_int, ctypes.c_float]
49
+ PMLIB.PM_inpaint2_regularity.restype = CMatT
50
+
51
+
52
+ def set_random_seed(seed: int):
53
+ PMLIB.PM_set_random_seed(ctypes.c_uint(seed))
54
+
55
+
56
+ def set_verbose(verbose: bool):
57
+ PMLIB.PM_set_verbose(ctypes.c_int(verbose))
58
+
59
+
60
+ def inpaint(
61
+ image: Union[np.ndarray, Image.Image],
62
+ mask: Optional[Union[np.ndarray, Image.Image]] = None,
63
+ *,
64
+ global_mask: Optional[Union[np.ndarray, Image.Image]] = None,
65
+ patch_size: int = 15
66
+ ) -> np.ndarray:
67
+ """
68
+ PatchMatch based inpainting proposed in:
69
+
70
+ PatchMatch : A Randomized Correspondence Algorithm for Structural Image Editing
71
+ C.Barnes, E.Shechtman, A.Finkelstein and Dan B.Goldman
72
+ SIGGRAPH 2009
73
+
74
+ Args:
75
+ image (Union[np.ndarray, Image.Image]): the input image, should be 3-channel RGB/BGR.
76
+ mask (Union[np.array, Image.Image], optional): the mask of the hole(s) to be filled, should be 1-channel.
77
+ If not provided (None), the algorithm will treat all purely white pixels as the holes (255, 255, 255).
78
+ global_mask (Union[np.array, Image.Image], optional): the target mask of the output image.
79
+ patch_size (int): the patch size for the inpainting algorithm.
80
+
81
+ Return:
82
+ result (np.ndarray): the repaired image, of the same size as the input image.
83
+ """
84
+
85
+ if isinstance(image, Image.Image):
86
+ image = np.array(image)
87
+ image = np.ascontiguousarray(image)
88
+ assert image.ndim == 3 and image.shape[2] == 3 and image.dtype == 'uint8'
89
+
90
+ if mask is None:
91
+ mask = (image == (255, 255, 255)).all(axis=2, keepdims=True).astype('uint8')
92
+ mask = np.ascontiguousarray(mask)
93
+ else:
94
+ mask = _canonize_mask_array(mask)
95
+
96
+ if global_mask is None:
97
+ ret_pymat = PMLIB.PM_inpaint(np_to_pymat(image), np_to_pymat(mask), ctypes.c_int(patch_size))
98
+ else:
99
+ global_mask = _canonize_mask_array(global_mask)
100
+ ret_pymat = PMLIB.PM_inpaint2(np_to_pymat(image), np_to_pymat(mask), np_to_pymat(global_mask), ctypes.c_int(patch_size))
101
+
102
+ ret_npmat = pymat_to_np(ret_pymat)
103
+ PMLIB.PM_free_pymat(ret_pymat)
104
+
105
+ return ret_npmat
106
+
107
+
108
+ def inpaint_regularity(
109
+ image: Union[np.ndarray, Image.Image],
110
+ mask: Optional[Union[np.ndarray, Image.Image]],
111
+ ijmap: np.ndarray,
112
+ *,
113
+ global_mask: Optional[Union[np.ndarray, Image.Image]] = None,
114
+ patch_size: int = 15, guide_weight: float = 0.25
115
+ ) -> np.ndarray:
116
+ if isinstance(image, Image.Image):
117
+ image = np.array(image)
118
+ image = np.ascontiguousarray(image)
119
+
120
+ assert isinstance(ijmap, np.ndarray) and ijmap.ndim == 3 and ijmap.shape[2] == 3 and ijmap.dtype == 'float32'
121
+ ijmap = np.ascontiguousarray(ijmap)
122
+
123
+ assert image.ndim == 3 and image.shape[2] == 3 and image.dtype == 'uint8'
124
+ if mask is None:
125
+ mask = (image == (255, 255, 255)).all(axis=2, keepdims=True).astype('uint8')
126
+ mask = np.ascontiguousarray(mask)
127
+ else:
128
+ mask = _canonize_mask_array(mask)
129
+
130
+
131
+ if global_mask is None:
132
+ ret_pymat = PMLIB.PM_inpaint_regularity(np_to_pymat(image), np_to_pymat(mask), np_to_pymat(ijmap), ctypes.c_int(patch_size), ctypes.c_float(guide_weight))
133
+ else:
134
+ global_mask = _canonize_mask_array(global_mask)
135
+ ret_pymat = PMLIB.PM_inpaint2_regularity(np_to_pymat(image), np_to_pymat(mask), np_to_pymat(global_mask), np_to_pymat(ijmap), ctypes.c_int(patch_size), ctypes.c_float(guide_weight))
136
+
137
+ ret_npmat = pymat_to_np(ret_pymat)
138
+ PMLIB.PM_free_pymat(ret_pymat)
139
+
140
+ return ret_npmat
141
+
142
+
143
+ def _canonize_mask_array(mask):
144
+ if isinstance(mask, Image.Image):
145
+ mask = np.array(mask)
146
+ if mask.ndim == 2 and mask.dtype == 'uint8':
147
+ mask = mask[..., np.newaxis]
148
+ assert mask.ndim == 3 and mask.shape[2] == 1 and mask.dtype == 'uint8'
149
+ return np.ascontiguousarray(mask)
150
+
151
+
152
+ dtype_pymat_to_ctypes = [
153
+ ctypes.c_uint8,
154
+ ctypes.c_int8,
155
+ ctypes.c_uint16,
156
+ ctypes.c_int16,
157
+ ctypes.c_int32,
158
+ ctypes.c_float,
159
+ ctypes.c_double,
160
+ ]
161
+
162
+
163
+ dtype_np_to_pymat = {
164
+ 'uint8': 0,
165
+ 'int8': 1,
166
+ 'uint16': 2,
167
+ 'int16': 3,
168
+ 'int32': 4,
169
+ 'float32': 5,
170
+ 'float64': 6,
171
+ }
172
+
173
+
174
+ def np_to_pymat(npmat):
175
+ assert npmat.ndim == 3
176
+ return CMatT(
177
+ ctypes.cast(npmat.ctypes.data, ctypes.c_void_p),
178
+ CShapeT(npmat.shape[1], npmat.shape[0], npmat.shape[2]),
179
+ dtype_np_to_pymat[str(npmat.dtype)]
180
+ )
181
+
182
+
183
+ def pymat_to_np(pymat):
184
+ npmat = np.ctypeslib.as_array(
185
+ ctypes.cast(pymat.data_ptr, ctypes.POINTER(dtype_pymat_to_ctypes[pymat.dtype])),
186
+ (pymat.shape.height, pymat.shape.width, pymat.shape.channels)
187
+ )
188
+ ret = np.empty(npmat.shape, npmat.dtype)
189
+ ret[:] = npmat
190
+ return ret
191
+
stablediffusion-infinity/app.py ADDED
@@ -0,0 +1,234 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import io
2
+ import base64
3
+ import os
4
+ from random import sample
5
+ from sched import scheduler
6
+
7
+ import uvicorn
8
+ from fastapi import FastAPI, Response
9
+ from fastapi.staticfiles import StaticFiles
10
+
11
+ import httpx
12
+ from urllib.parse import urljoin
13
+
14
+
15
+ import numpy as np
16
+ import torch
17
+ from torch import autocast
18
+ from diffusers import StableDiffusionPipeline, StableDiffusionInpaintPipeline
19
+ from PIL import Image
20
+ from PIL import ImageOps
21
+ import gradio as gr
22
+ import base64
23
+ import skimage
24
+ import skimage.measure
25
+ from utils import *
26
+
27
+ app = FastAPI()
28
+
29
+ auth_token = os.environ.get("API_TOKEN") or True
30
+
31
+ WHITES = 66846720
32
+ MASK = Image.open("mask.png")
33
+ try:
34
+ SAMPLING_MODE = Image.Resampling.LANCZOS
35
+ except Exception as e:
36
+ SAMPLING_MODE = Image.LANCZOS
37
+
38
+
39
+ blocks = gr.Blocks().queue()
40
+ model = {}
41
+
42
+
43
+ def get_model():
44
+ if "text2img" not in model:
45
+ text2img = StableDiffusionPipeline.from_pretrained(
46
+ "CompVis/stable-diffusion-v1-4",
47
+ revision="fp16",
48
+ torch_dtype=torch.float16,
49
+ use_auth_token=auth_token,
50
+ ).to("cuda")
51
+ inpaint = StableDiffusionInpaintPipeline(
52
+ vae=text2img.vae,
53
+ text_encoder=text2img.text_encoder,
54
+ tokenizer=text2img.tokenizer,
55
+ unet=text2img.unet,
56
+ scheduler=text2img.scheduler,
57
+ safety_checker=text2img.safety_checker,
58
+ feature_extractor=text2img.feature_extractor,
59
+ ).to("cuda")
60
+
61
+ # lms = LMSDiscreteScheduler(
62
+ # beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
63
+
64
+ # img2img = StableDiffusionImg2ImgPipeline(
65
+ # vae=text2img.vae,
66
+ # text_encoder=text2img.text_encoder,
67
+ # tokenizer=text2img.tokenizer,
68
+ # unet=text2img.unet,
69
+ # scheduler=lms,
70
+ # safety_checker=text2img.safety_checker,
71
+ # feature_extractor=text2img.feature_extractor,
72
+ # ).to("cuda")
73
+ # try:
74
+ # total_memory = torch.cuda.get_device_properties(0).total_memory // (
75
+ # 1024 ** 3
76
+ # )
77
+ # if total_memory <= 5:
78
+ # inpaint.enable_attention_slicing()
79
+ # except:
80
+ # pass
81
+ model["text2img"] = text2img
82
+ model["inpaint"] = inpaint
83
+ # model["img2img"] = img2img
84
+
85
+ return model["text2img"], model["inpaint"]
86
+ # model["img2img"]
87
+
88
+
89
+ get_model()
90
+
91
+
92
+ def run_outpaint(
93
+ input_image,
94
+ prompt_text,
95
+ strength,
96
+ guidance,
97
+ step,
98
+ fill_mode,
99
+ ):
100
+ text2img, inpaint = get_model()
101
+ sel_buffer = np.array(input_image)
102
+ img = sel_buffer[:, :, 0:3]
103
+ mask = sel_buffer[:, :, -1]
104
+ process_size = 512
105
+
106
+ mask_sum = mask.sum()
107
+ if mask_sum >= WHITES:
108
+ print("inpaiting with fixed Mask")
109
+ mask = np.array(MASK)[:, :, 0]
110
+ img, mask = functbl[fill_mode](img, mask)
111
+ init_image = Image.fromarray(img)
112
+ mask = 255 - mask
113
+ mask = skimage.measure.block_reduce(mask, (8, 8), np.max)
114
+ mask = mask.repeat(8, axis=0).repeat(8, axis=1)
115
+ mask_image = Image.fromarray(mask)
116
+
117
+ # mask_image=mask_image.filter(ImageFilter.GaussianBlur(radius = 8))
118
+ with autocast("cuda"):
119
+ images = inpaint(
120
+ prompt=prompt_text,
121
+ init_image=init_image.resize(
122
+ (process_size, process_size), resample=SAMPLING_MODE
123
+ ),
124
+ mask_image=mask_image.resize((process_size, process_size)),
125
+ strength=strength,
126
+ num_inference_steps=step,
127
+ guidance_scale=guidance,
128
+ )
129
+ elif mask_sum > 0 and mask_sum < WHITES:
130
+ print("inpainting")
131
+ img, mask = functbl[fill_mode](img, mask)
132
+ init_image = Image.fromarray(img)
133
+ mask = 255 - mask
134
+ mask = skimage.measure.block_reduce(mask, (8, 8), np.max)
135
+ mask = mask.repeat(8, axis=0).repeat(8, axis=1)
136
+ mask_image = Image.fromarray(mask)
137
+
138
+ # mask_image=mask_image.filter(ImageFilter.GaussianBlur(radius = 8))
139
+ with autocast("cuda"):
140
+ images = inpaint(
141
+ prompt=prompt_text,
142
+ init_image=init_image.resize(
143
+ (process_size, process_size), resample=SAMPLING_MODE
144
+ ),
145
+ mask_image=mask_image.resize((process_size, process_size)),
146
+ strength=strength,
147
+ num_inference_steps=step,
148
+ guidance_scale=guidance,
149
+ )
150
+ else:
151
+ print("text2image")
152
+ with autocast("cuda"):
153
+ images = text2img(
154
+ prompt=prompt_text, height=process_size, width=process_size,
155
+ )
156
+
157
+ return images['sample'][0], images["nsfw_content_detected"][0]
158
+
159
+
160
+ with blocks as demo:
161
+
162
+ with gr.Row():
163
+
164
+ with gr.Column(scale=3, min_width=270):
165
+ sd_prompt = gr.Textbox(
166
+ label="Prompt", placeholder="input your prompt here", lines=4
167
+ )
168
+ with gr.Column(scale=2, min_width=150):
169
+ sd_strength = gr.Slider(
170
+ label="Strength", minimum=0.0, maximum=1.0, value=0.75, step=0.01
171
+ )
172
+ with gr.Column(scale=1, min_width=150):
173
+ sd_step = gr.Number(label="Step", value=50, precision=0)
174
+ sd_guidance = gr.Number(label="Guidance", value=7.5)
175
+ with gr.Row():
176
+ with gr.Column(scale=4, min_width=600):
177
+ init_mode = gr.Radio(
178
+ label="Init mode",
179
+ choices=[
180
+ "patchmatch",
181
+ "edge_pad",
182
+ "cv2_ns",
183
+ "cv2_telea",
184
+ "gaussian",
185
+ "perlin",
186
+ ],
187
+ value="patchmatch",
188
+ type="value",
189
+ )
190
+
191
+ model_input = gr.Image(label="Input", type="pil", image_mode="RGBA")
192
+ proceed_button = gr.Button("Proceed", elem_id="proceed")
193
+ model_output = gr.Image(label="Output")
194
+ is_nsfw = gr.JSON()
195
+
196
+ proceed_button.click(
197
+ fn=run_outpaint,
198
+ inputs=[
199
+ model_input,
200
+ sd_prompt,
201
+ sd_strength,
202
+ sd_guidance,
203
+ sd_step,
204
+ init_mode,
205
+ ],
206
+ outputs=[model_output, is_nsfw],
207
+ )
208
+
209
+
210
+ blocks.config['dev_mode'] = False
211
+
212
+ S3_HOST = "https://s3.amazonaws.com"
213
+
214
+
215
+ @app.get("/uploads/{path:path}")
216
+ async def uploads(path: str, response: Response):
217
+ async with httpx.AsyncClient() as client:
218
+ proxy = await client.get(f"{S3_HOST}/{path}")
219
+ response.body = proxy.content
220
+ response.status_code = proxy.status_code
221
+ response.headers['Access-Control-Allow-Origin'] = '*'
222
+ response.headers['Access-Control-Allow-Methods'] = 'POST, GET, DELETE, OPTIONS'
223
+ response.headers['Access-Control-Allow-Headers'] = 'Authorization, Content-Type'
224
+ return response
225
+
226
+
227
+ app = gr.mount_gradio_app(app, blocks, "/gradio",
228
+ gradio_api_url="http://localhost:7860/gradio")
229
+
230
+ app.mount("/", StaticFiles(directory="../static", html=True), name="static")
231
+
232
+ if __name__ == "__main__":
233
+ uvicorn.run(app, host="0.0.0.0", port=7860,
234
+ log_level="debug", reload=False)
stablediffusion-infinity/mask.png ADDED
stablediffusion-infinity/perlin2d.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ ##########
4
+ # https://stackoverflow.com/questions/42147776/producing-2d-perlin-noise-with-numpy/42154921#42154921
5
+ def perlin(x, y, seed=0):
6
+ # permutation table
7
+ np.random.seed(seed)
8
+ p = np.arange(256, dtype=int)
9
+ np.random.shuffle(p)
10
+ p = np.stack([p, p]).flatten()
11
+ # coordinates of the top-left
12
+ xi, yi = x.astype(int), y.astype(int)
13
+ # internal coordinates
14
+ xf, yf = x - xi, y - yi
15
+ # fade factors
16
+ u, v = fade(xf), fade(yf)
17
+ # noise components
18
+ n00 = gradient(p[p[xi] + yi], xf, yf)
19
+ n01 = gradient(p[p[xi] + yi + 1], xf, yf - 1)
20
+ n11 = gradient(p[p[xi + 1] + yi + 1], xf - 1, yf - 1)
21
+ n10 = gradient(p[p[xi + 1] + yi], xf - 1, yf)
22
+ # combine noises
23
+ x1 = lerp(n00, n10, u)
24
+ x2 = lerp(n01, n11, u) # FIX1: I was using n10 instead of n01
25
+ return lerp(x1, x2, v) # FIX2: I also had to reverse x1 and x2 here
26
+
27
+
28
+ def lerp(a, b, x):
29
+ "linear interpolation"
30
+ return a + x * (b - a)
31
+
32
+
33
+ def fade(t):
34
+ "6t^5 - 15t^4 + 10t^3"
35
+ return 6 * t ** 5 - 15 * t ** 4 + 10 * t ** 3
36
+
37
+
38
+ def gradient(h, x, y):
39
+ "grad converts h to the right gradient vector and return the dot product with (x,y)"
40
+ vectors = np.array([[0, 1], [0, -1], [1, 0], [-1, 0]])
41
+ g = vectors[h % 4]
42
+ return g[:, :, 0] * x + g[:, :, 1] * y
43
+
44
+
45
+ ##########
stablediffusion-infinity/readme.md ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # stablediffusion-infinity
2
+
3
+ Outpainting with Stable Diffusion on an infinite canvas.
4
+
5
+ [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/lkwq007/stablediffusion-infinity/blob/master/stablediffusion_infinity_colab.ipynb)
6
+
7
+ Start with init_image:
8
+
9
+
10
+
11
+ https://user-images.githubusercontent.com/1665437/190231611-fc263115-0fb9-4f2d-a71b-7e500c1e311d.mp4
12
+
13
+
14
+ Start with text2img:
15
+
16
+ https://user-images.githubusercontent.com/1665437/190212025-f4a82c46-0ff1-4ca2-b79b-6c81601e3eed.mp4
17
+
18
+
19
+ It is recommended to run the notebook on a local server for better interactive control.
20
+
21
+ The notebook might work on Windows (see this issue https://github.com/lkwq007/stablediffusion-infinity/issues/12 for more information) and Apple Silicon devices (untested, check guide here: https://huggingface.co/docs/diffusers/optimization/mps).
22
+
23
+ ## Status
24
+
25
+ This project mainly works as a proof of concept. In that case, the UI design is relatively weak, and the quality of results is not guaranteed.
26
+ You may need to do prompt engineering or change the size of the selection box to get better outpainting results.
27
+
28
+ Pull requests are welcome for better UI control, ideas to achieve better results, or any other improvements.
29
+
30
+ ## Setup environment
31
+ setup with `environment.yml`
32
+ ```
33
+ git clone --recurse-submodules https://github.com/lkwq007/stablediffusion-infinity
34
+ cd stablediffusion-infinity
35
+ conda env create -f environment.yml
36
+ ```
37
+
38
+ if the `environment.yml` doesn't work for you, you may install dependencies manually:
39
+ ```
40
+ conda create -n sd-inf python=3.10
41
+ conda activate sd-inf
42
+ conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
43
+ conda install scipy scikit-image
44
+ conda install -c conda-forge diffusers transformers ftfy
45
+ pip install opencv-python
46
+ pip install gradio==3.4
47
+ ```
48
+
49
+ For windows, you may need to replace `pip install opencv-python` with `conda install -c conda-forge opencv`
50
+ ## CPP library (optional)
51
+
52
+ Note that `opencv` library (e.g. `libopencv-dev`/`opencv-devel`, the package name may differ on different distributions) is required for `PyPatchMatch`. You may need to install `opencv` by yourself. If no `opencv` installed, the `patch_match` option (usually better quality) won't work.
53
+
54
+ ## How-to
55
+
56
+ ```
57
+ conda activate sd-inf
58
+ python app.py
59
+ ```
60
+
61
+ ## Running with Docker
62
+
63
+ This should get you started without needing to manually install anything, except for having an environment with Docker installed and an Nvidia GPU.
64
+ This has been tested on Docker Desktop on Windows 10 using the WSL2 backend.
65
+
66
+ First, update the .env file with your Huggingface token from https://huggingface.co/settings/tokens
67
+
68
+ Open your shell that has docker and run these commands
69
+
70
+ ```
71
+ cd stablediffusion-infinity
72
+ docker-compose build
73
+ docker-compose up
74
+ ```
75
+
76
+ Watch the log for the url to open in your browser. Choose the one that starts with http://127.0.0.1:8888/
77
+
78
+
79
+ ## FAQs
80
+
81
+ - Troubleshooting on Windows:
82
+ - https://github.com/lkwq007/stablediffusion-infinity/issues/12
83
+ - False positive rate of safety checker is quite high:
84
+ - https://github.com/lkwq007/stablediffusion-infinity/issues/8#issuecomment-1248448453
85
+ - What is the init_mode
86
+ - init_mode indicates how to fill the empty/masked region, usually `patch_match` is better than others
87
+ - The GUI is lagging on colab
88
+ - It is recommended to run the notebook on a local server since the interactions and canvas content updates are actually handled by the python backend on the serverside, and that's how `ipycanvas` works
89
+ - colab doesn't support the latest version of `ipycanvas`, which may have better performance
90
+
91
+ ## Credit
92
+
93
+ The code of `perlin2d.py` is from https://stackoverflow.com/questions/42147776/producing-2d-perlin-noise-with-numpy/42154921#42154921 and is **not** included in the scope of LICENSE used in this repo.
stablediffusion-infinity/utils.py ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from PIL import Image
2
+ from PIL import ImageFilter
3
+ import cv2
4
+ import numpy as np
5
+ import scipy
6
+ import scipy.signal
7
+ from scipy.spatial import cKDTree
8
+
9
+ import os
10
+ from perlin2d import *
11
+
12
+ patch_match_compiled = True
13
+
14
+ from PyPatchMatch import patch_match
15
+
16
+
17
+ def edge_pad(img, mask, mode=1):
18
+ if mode == 0:
19
+ nmask = mask.copy()
20
+ nmask[nmask > 0] = 1
21
+ res0 = 1 - nmask
22
+ res1 = nmask
23
+ p0 = np.stack(res0.nonzero(), axis=0).transpose()
24
+ p1 = np.stack(res1.nonzero(), axis=0).transpose()
25
+ min_dists, min_dist_idx = cKDTree(p1).query(p0, 1)
26
+ loc = p1[min_dist_idx]
27
+ for (a, b), (c, d) in zip(p0, loc):
28
+ img[a, b] = img[c, d]
29
+ elif mode == 1:
30
+ record = {}
31
+ kernel = [[1] * 3 for _ in range(3)]
32
+ nmask = mask.copy()
33
+ nmask[nmask > 0] = 1
34
+ res = scipy.signal.convolve2d(
35
+ nmask, kernel, mode="same", boundary="fill", fillvalue=1
36
+ )
37
+ res[nmask < 1] = 0
38
+ res[res == 9] = 0
39
+ res[res > 0] = 1
40
+ ylst, xlst = res.nonzero()
41
+ queue = [(y, x) for y, x in zip(ylst, xlst)]
42
+ # bfs here
43
+ cnt = res.astype(np.float32)
44
+ acc = img.astype(np.float32)
45
+ step = 1
46
+ h = acc.shape[0]
47
+ w = acc.shape[1]
48
+ offset = [(1, 0), (-1, 0), (0, 1), (0, -1)]
49
+ while queue:
50
+ target = []
51
+ for y, x in queue:
52
+ val = acc[y][x]
53
+ for yo, xo in offset:
54
+ yn = y + yo
55
+ xn = x + xo
56
+ if 0 <= yn < h and 0 <= xn < w and nmask[yn][xn] < 1:
57
+ if record.get((yn, xn), step) == step:
58
+ acc[yn][xn] = acc[yn][xn] * cnt[yn][xn] + val
59
+ cnt[yn][xn] += 1
60
+ acc[yn][xn] /= cnt[yn][xn]
61
+ if (yn, xn) not in record:
62
+ record[(yn, xn)] = step
63
+ target.append((yn, xn))
64
+ step += 1
65
+ queue = target
66
+ img = acc.astype(np.uint8)
67
+ else:
68
+ nmask = mask.copy()
69
+ ylst, xlst = nmask.nonzero()
70
+ yt, xt = ylst.min(), xlst.min()
71
+ yb, xb = ylst.max(), xlst.max()
72
+ content = img[yt : yb + 1, xt : xb + 1]
73
+ img = np.pad(
74
+ content,
75
+ ((yt, mask.shape[0] - yb - 1), (xt, mask.shape[1] - xb - 1), (0, 0)),
76
+ mode="edge",
77
+ )
78
+ return img, mask
79
+
80
+
81
+ def perlin_noise(img, mask):
82
+ lin = np.linspace(0, 5, mask.shape[0], endpoint=False)
83
+ x, y = np.meshgrid(lin, lin)
84
+ avg = img.mean(axis=0).mean(axis=0)
85
+ # noise=[((perlin(x, y)+1)*128+avg[i]).astype(np.uint8) for i in range(3)]
86
+ noise = [((perlin(x, y) + 1) * 0.5 * 255).astype(np.uint8) for i in range(3)]
87
+ noise = np.stack(noise, axis=-1)
88
+ # mask=skimage.measure.block_reduce(mask,(8,8),np.min)
89
+ # mask=mask.repeat(8, axis=0).repeat(8, axis=1)
90
+ # mask_image=Image.fromarray(mask)
91
+ # mask_image=mask_image.filter(ImageFilter.GaussianBlur(radius = 4))
92
+ # mask=np.array(mask_image)
93
+ nmask = mask.copy()
94
+ # nmask=nmask/255.0
95
+ nmask[mask > 0] = 1
96
+ img = nmask[:, :, np.newaxis] * img + (1 - nmask[:, :, np.newaxis]) * noise
97
+ # img=img.astype(np.uint8)
98
+ return img, mask
99
+
100
+
101
+ def gaussian_noise(img, mask):
102
+ noise = np.random.randn(mask.shape[0], mask.shape[1], 3)
103
+ noise = (noise + 1) / 2 * 255
104
+ noise = noise.astype(np.uint8)
105
+ nmask = mask.copy()
106
+ nmask[mask > 0] = 1
107
+ img = nmask[:, :, np.newaxis] * img + (1 - nmask[:, :, np.newaxis]) * noise
108
+ return img, mask
109
+
110
+
111
+ def cv2_telea(img, mask):
112
+ ret = cv2.inpaint(img, 255 - mask, 5, cv2.INPAINT_TELEA)
113
+ return ret, mask
114
+
115
+
116
+ def cv2_ns(img, mask):
117
+ ret = cv2.inpaint(img, 255 - mask, 5, cv2.INPAINT_NS)
118
+ return ret, mask
119
+
120
+
121
+ def patch_match_func(img, mask):
122
+ ret = patch_match.inpaint(img, mask=255 - mask, patch_size=3)
123
+ return ret, mask
124
+
125
+
126
+ def mean_fill(img, mask):
127
+ avg = img.mean(axis=0).mean(axis=0)
128
+ img[mask < 1] = avg
129
+ return img, mask
130
+
131
+
132
+ functbl = {
133
+ "gaussian": gaussian_noise,
134
+ "perlin": perlin_noise,
135
+ "edge_pad": edge_pad,
136
+ "patchmatch": patch_match_func if (os.name != "nt" and patch_match_compiled) else edge_pad,
137
+ "cv2_ns": cv2_ns,
138
+ "cv2_telea": cv2_telea,
139
+ "mean_fill": mean_fill,
140
+ }