update
Browse files- app.py +17 -10
- src/model_processing.py +12 -12
app.py
CHANGED
|
@@ -78,23 +78,30 @@ placeholder_image = Image.new("RGBA", (512, 512), (0, 0, 0, 0))
|
|
| 78 |
|
| 79 |
@spaces.GPU
|
| 80 |
def process_selected_models(uploaded_image, selected_models):
|
| 81 |
-
|
|
|
|
|
|
|
| 82 |
for model_name in model_name_mapping:
|
|
|
|
|
|
|
| 83 |
if uploaded_image is None:
|
| 84 |
-
|
| 85 |
elif model_name in selected_models:
|
| 86 |
try:
|
| 87 |
model, data_params = model_dict[model_name]
|
| 88 |
pixel_values = pil_to_tensor(uploaded_image, **data_params).unsqueeze(0).to(device)
|
| 89 |
output = model(pixel_values)[0]
|
| 90 |
reconstructed_image = tensor_to_pil(output[0].cpu(), **data_params)
|
| 91 |
-
|
| 92 |
except Exception as e:
|
| 93 |
print(f"Error in model {model_name}: {e}")
|
| 94 |
-
|
|
|
|
| 95 |
else:
|
| 96 |
-
|
| 97 |
-
|
|
|
|
|
|
|
| 98 |
|
| 99 |
with gr.Blocks() as demo:
|
| 100 |
gr.Markdown("## VTBench")
|
|
@@ -140,15 +147,15 @@ with gr.Blocks() as demo:
|
|
| 140 |
run_button = gr.Button("Start Processing")
|
| 141 |
|
| 142 |
image_outputs = []
|
| 143 |
-
|
| 144 |
-
|
| 145 |
n_columns = 5
|
| 146 |
-
output_rows = [
|
| 147 |
|
| 148 |
with gr.Column():
|
| 149 |
for row in output_rows:
|
| 150 |
with gr.Row():
|
| 151 |
-
for model_name
|
|
|
|
| 152 |
out_img = gr.Image(
|
| 153 |
label=f"{display_name} (Not run)",
|
| 154 |
value=placeholder_image,
|
|
|
|
| 78 |
|
| 79 |
@spaces.GPU
|
| 80 |
def process_selected_models(uploaded_image, selected_models):
|
| 81 |
+
selected_results = []
|
| 82 |
+
placeholder_results = []
|
| 83 |
+
|
| 84 |
for model_name in model_name_mapping:
|
| 85 |
+
label = model_name_mapping[model_name]
|
| 86 |
+
|
| 87 |
if uploaded_image is None:
|
| 88 |
+
result = gr.update(value=placeholder_image, label=f"{label} (No input)")
|
| 89 |
elif model_name in selected_models:
|
| 90 |
try:
|
| 91 |
model, data_params = model_dict[model_name]
|
| 92 |
pixel_values = pil_to_tensor(uploaded_image, **data_params).unsqueeze(0).to(device)
|
| 93 |
output = model(pixel_values)[0]
|
| 94 |
reconstructed_image = tensor_to_pil(output[0].cpu(), **data_params)
|
| 95 |
+
result = gr.update(value=reconstructed_image, label=label)
|
| 96 |
except Exception as e:
|
| 97 |
print(f"Error in model {model_name}: {e}")
|
| 98 |
+
result = gr.update(value=placeholder_image, label=f"{label} (Error)")
|
| 99 |
+
selected_results.append(result)
|
| 100 |
else:
|
| 101 |
+
result = gr.update(value=placeholder_image, label=f"{label} (Not selected)")
|
| 102 |
+
placeholder_results.append(result)
|
| 103 |
+
|
| 104 |
+
return selected_results + placeholder_results
|
| 105 |
|
| 106 |
with gr.Blocks() as demo:
|
| 107 |
gr.Markdown("## VTBench")
|
|
|
|
| 147 |
run_button = gr.Button("Start Processing")
|
| 148 |
|
| 149 |
image_outputs = []
|
| 150 |
+
model_names_ordered = list(model_name_mapping.keys())
|
|
|
|
| 151 |
n_columns = 5
|
| 152 |
+
output_rows = [model_names_ordered[i:i+n_columns] for i in range(0, len(model_names_ordered), n_columns)]
|
| 153 |
|
| 154 |
with gr.Column():
|
| 155 |
for row in output_rows:
|
| 156 |
with gr.Row():
|
| 157 |
+
for model_name in row:
|
| 158 |
+
display_name = model_name_mapping[model_name]
|
| 159 |
out_img = gr.Image(
|
| 160 |
label=f"{display_name} (Not run)",
|
| 161 |
value=placeholder_image,
|
src/model_processing.py
CHANGED
|
@@ -279,8 +279,8 @@ def get_model(model_path, model_name):
|
|
| 279 |
data_params = {
|
| 280 |
"target_image_size": (384, 384),
|
| 281 |
"lock_ratio": True,
|
| 282 |
-
"center_crop":
|
| 283 |
-
"padding":
|
| 284 |
}
|
| 285 |
|
| 286 |
elif "var" in model_name.lower():
|
|
@@ -307,8 +307,8 @@ def get_model(model_path, model_name):
|
|
| 307 |
(512, 512) if "512" in model_name.lower() else (256, 256)
|
| 308 |
),
|
| 309 |
"lock_ratio": True,
|
| 310 |
-
"center_crop":
|
| 311 |
-
"padding":
|
| 312 |
"standardize": False,
|
| 313 |
}
|
| 314 |
|
|
@@ -349,8 +349,8 @@ def get_model(model_path, model_name):
|
|
| 349 |
data_params = {
|
| 350 |
"target_image_size": (1024, 1024),
|
| 351 |
"lock_ratio": True,
|
| 352 |
-
"center_crop":
|
| 353 |
-
"padding":
|
| 354 |
"standardize": False,
|
| 355 |
}
|
| 356 |
|
|
@@ -367,8 +367,8 @@ def get_model(model_path, model_name):
|
|
| 367 |
data_params = {
|
| 368 |
"target_image_size": (1024, 1024),
|
| 369 |
"lock_ratio": True,
|
| 370 |
-
"center_crop":
|
| 371 |
-
"padding":
|
| 372 |
"standardize": True,
|
| 373 |
}
|
| 374 |
|
|
@@ -385,8 +385,8 @@ def get_model(model_path, model_name):
|
|
| 385 |
data_params = {
|
| 386 |
"target_image_size": (1024, 1024),
|
| 387 |
"lock_ratio": True,
|
| 388 |
-
"center_crop":
|
| 389 |
-
"padding":
|
| 390 |
"standardize": True,
|
| 391 |
}
|
| 392 |
|
|
@@ -396,8 +396,8 @@ def get_model(model_path, model_name):
|
|
| 396 |
data_params = {
|
| 397 |
"target_image_size": (1024, 1024),
|
| 398 |
"lock_ratio": True,
|
| 399 |
-
"center_crop":
|
| 400 |
-
"padding":
|
| 401 |
"standardize": False,
|
| 402 |
}
|
| 403 |
model = GPTImage(data_params)
|
|
|
|
| 279 |
data_params = {
|
| 280 |
"target_image_size": (384, 384),
|
| 281 |
"lock_ratio": True,
|
| 282 |
+
"center_crop": True,
|
| 283 |
+
"padding": False,
|
| 284 |
}
|
| 285 |
|
| 286 |
elif "var" in model_name.lower():
|
|
|
|
| 307 |
(512, 512) if "512" in model_name.lower() else (256, 256)
|
| 308 |
),
|
| 309 |
"lock_ratio": True,
|
| 310 |
+
"center_crop": True,
|
| 311 |
+
"padding": False,
|
| 312 |
"standardize": False,
|
| 313 |
}
|
| 314 |
|
|
|
|
| 349 |
data_params = {
|
| 350 |
"target_image_size": (1024, 1024),
|
| 351 |
"lock_ratio": True,
|
| 352 |
+
"center_crop": True,
|
| 353 |
+
"padding": False,
|
| 354 |
"standardize": False,
|
| 355 |
}
|
| 356 |
|
|
|
|
| 367 |
data_params = {
|
| 368 |
"target_image_size": (1024, 1024),
|
| 369 |
"lock_ratio": True,
|
| 370 |
+
"center_crop": True,
|
| 371 |
+
"padding": False,
|
| 372 |
"standardize": True,
|
| 373 |
}
|
| 374 |
|
|
|
|
| 385 |
data_params = {
|
| 386 |
"target_image_size": (1024, 1024),
|
| 387 |
"lock_ratio": True,
|
| 388 |
+
"center_crop": True,
|
| 389 |
+
"padding": False,
|
| 390 |
"standardize": True,
|
| 391 |
}
|
| 392 |
|
|
|
|
| 396 |
data_params = {
|
| 397 |
"target_image_size": (1024, 1024),
|
| 398 |
"lock_ratio": True,
|
| 399 |
+
"center_crop": True,
|
| 400 |
+
"padding": False,
|
| 401 |
"standardize": False,
|
| 402 |
}
|
| 403 |
model = GPTImage(data_params)
|