Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import numpy as np | |
| import random | |
| from diffusers import DiffusionPipeline | |
| from optimum.intel.openvino.modeling_diffusion import OVModelVaeDecoder, OVBaseModel, OVStableDiffusionPipeline | |
| import torch | |
| from huggingface_hub import snapshot_download | |
| import openvino.runtime as ov | |
| from typing import Optional, Dict | |
| from diffusers import EulerAncestralDiscreteScheduler, LCMScheduler | |
| #LCMScheduler 產生垃圾 | |
| #EulerDiscreteScheduler 尚可 | |
| #EulerAncestralDiscreteScheduler 很不錯chatgpt推薦 | |
| #model_id = "hsuwill000/LCM-anything-v5-openvino" | |
| model_id = "spamsoms/LCM-anything-v5-openvino2" | |
| #adapter_id = "latent-consistency/lcm-lora-sdv1-5" | |
| #1024*512 記憶體不足 | |
| HIGH=512 | |
| WIDTH=512 | |
| batch_size = -1 | |
| pipe = OVStableDiffusionPipeline.from_pretrained( | |
| model_id, | |
| compile = False, | |
| ov_config = {"CACHE_DIR":""}, | |
| torch_dtype=torch.int8, #快 | |
| #torch_dtype=torch.bfloat16, #中 | |
| #variant="fp16", | |
| #torch_dtype=torch.IntTensor, #慢, | |
| safety_checker=None, | |
| use_safetensors=False, | |
| ) | |
| print(pipe.scheduler.compatibles) | |
| #pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) | |
| #pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) | |
| #pipe.load_lora_weights(adapter_id) | |
| #pipe.fuse_lora() | |
| pipe.reshape( batch_size=-1, height=HIGH, width=WIDTH, num_images_per_prompt=1) | |
| #pipe.load_textual_inversion("./badhandv4.pt", "badhandv4") | |
| #pipe.load_textual_inversion("./Konpeto.pt", "Konpeto") | |
| #<shigure-ui-style> | |
| #pipe.load_textual_inversion("sd-concepts-library/shigure-ui-style") | |
| #pipe.load_textual_inversion("sd-concepts-library/ruan-jia") | |
| #pipe.load_textual_inversion("sd-concepts-library/agm-style-nao") | |
| pipe.compile() | |
| prompt="" | |
| negative_prompt="(worst quality, low quality, lowres, ), zombie, interlocked fingers, large breasts, username, watermark," | |
| def infer(prompt,negative_prompt): | |
| image = pipe( | |
| prompt = prompt, | |
| negative_prompt = negative_prompt, | |
| width = WIDTH, | |
| height = HIGH, | |
| guidance_scale=1.0, | |
| num_inference_steps=8, | |
| num_images_per_prompt=1, | |
| ).images[0] | |
| return image | |
| examples = [ | |
| "Sailor Chibi Moon, Katsura Masakazu style,close-up,", | |
| "1girl, silver hair, symbol-shaped pupils, yellow eyes, smiling, light particles, light rays, wallpaper, star guardian, serious face, red inner hair, power aura, grandmaster1, golden and white clothes", | |
| "masterpiece, best quality, highres booru, 1girl, solo, depth of field, rim lighting, flowers, petals, from above, crystals, butterfly, vegetation, aura, magic, hatsune miku, blush, slight smile, close-up, against wall,", | |
| "close-up,(illustration, 8k CG, extremely detailed),(whimsical),catgirl,teenage girl,playing in the snow,winter wonderland,snow-covered trees,soft pastel colors,gentle lighting,sparkling snow,joyful,magical atmosphere,highly detailed,fluffy cat ears and tail,intricate winter clothing,shallow depth of field,watercolor techniques,close-up shot,slightly tilted angle,fairy tale architecture,nostalgic,playful,winter magic,(masterpiece:2),best quality,ultra highres,original,extremely detailed,perfect lighting,", | |
| ] | |
| css=""" | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 520px; | |
| } | |
| """ | |
| power_device = "CPU" | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown(f""" | |
| # anything-v5-openvino {WIDTH}x{HIGH} | |
| Currently running on {power_device}. | |
| """) | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0) | |
| result = gr.Image(label="Result", show_label=False) | |
| gr.Examples( | |
| examples = examples, | |
| fn = infer, | |
| inputs = [prompt], | |
| outputs = [result] | |
| ) | |
| run_button.click( | |
| fn = infer, | |
| inputs = [prompt], | |
| outputs = [result] | |
| ) | |
| demo.queue().launch() |