File size: 5,539 Bytes
17b7ace
 
 
 
 
 
 
 
 
 
 
 
 
250de33
73bfb6f
47f42b3
17b7ace
47f42b3
17b7ace
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cb61c4
17b7ace
 
 
 
 
 
1cb61c4
17b7ace
 
 
 
 
 
1cb61c4
 
250de33
 
17b7ace
 
1cb61c4
17b7ace
1cb61c4
17b7ace
1cb61c4
250de33
 
17b7ace
 
1cb61c4
17b7ace
1cb61c4
 
73bfb6f
17b7ace
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cb61c4
17b7ace
73bfb6f
1cb61c4
73bfb6f
 
17b7ace
 
 
1cb61c4
 
 
 
 
 
 
 
 
17b7ace
 
 
 
1cb61c4
17b7ace
 
 
 
 
250de33
7d736d7
1cb61c4
 
35634ec
1cb61c4
73bfb6f
35634ec
7d736d7
1cb61c4
 
 
 
7d736d7
1cb61c4
7d736d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17b7ace
dc28123
 
7d736d7
dc28123
17b7ace
73bfb6f
17b7ace
 
 
5f9fd39
17b7ace
 
 
250de33
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
from fastapi import FastAPI
from pydantic import BaseModel
from typing import List, Dict
import os
import requests
import yfinance as yf
import numpy as np
from transformers import pipeline
from cachetools import TTLCache, cached

# -----------------------------
# CONFIG
# -----------------------------
NEWSAPI_KEY = os.environ.get("NEWSAPI_KEY", "").strip()
MAX_HEADLINES = 10  # fetch more for robustness

MODEL_A = "yiyanghkust/finbert-tone"
MODEL_B = "ProsusAI/finbert"

# -----------------------------
# Load models
# -----------------------------
sentiment_a = pipeline("sentiment-analysis", model=MODEL_A, device=-1)
sentiment_b = pipeline("sentiment-analysis", model=MODEL_B, device=-1)

LABEL_MAP = {
    "positive": "positive", "neutral": "neutral", "negative": "negative",
    "Positive": "positive", "Neutral": "neutral", "Negative": "negative",
    "LABEL_0": "negative", "LABEL_1": "neutral", "LABEL_2": "positive"
}

# -----------------------------
# Caching
# -----------------------------
stock_cache = TTLCache(maxsize=100, ttl=600)

# -----------------------------
# News fetchers
# -----------------------------
def fetch_news_newsapi(query: str, limit: int = MAX_HEADLINES) -> List[str]:
    if not NEWSAPI_KEY:
        return []
    url = "https://newsapi.org/v2/everything"
    params = {
        "q": query,
        "language": "en",
        "pageSize": limit,
        "sortBy": "publishedAt",
        "apiKey": NEWSAPI_KEY,
    }
    try:
        r = requests.get(url, params=params, timeout=6)
        r.raise_for_status()
        articles = r.json().get("articles", [])[:limit]
        return [a.get("title", "") for a in articles if a.get("title")]
    except Exception as e:
        print(f"[NewsAPI error] {e}")
        return []

def fetch_news_yfinance(ticker: str, limit: int = MAX_HEADLINES) -> List[str]:
    try:
        t = yf.Ticker(ticker)
        news_items = getattr(t, "news", None) or []
        return [n.get("title") for n in news_items if n.get("title")][:limit]
    except Exception as e:
        print(f"[Yahoo Finance error] {e}")
        return []

def fetch_headlines(stock: str, limit: int = MAX_HEADLINES) -> List[str]:
    headlines = fetch_news_newsapi(stock, limit)
    if not headlines:
        headlines = fetch_news_yfinance(stock, limit)
    return headlines

# -----------------------------
# Ensemble utilities
# -----------------------------
def model_to_vector(pred: Dict) -> np.ndarray:
    label = pred.get("label", "")
    score = float(pred.get("score", 0.0))
    mapped = LABEL_MAP.get(label, label.lower())
    vec = np.zeros(3)
    if mapped == "negative":
        vec[0] = score
    elif mapped == "neutral":
        vec[1] = score
    elif mapped == "positive":
        vec[2] = score
    else:
        vec[1] = score
    return vec

def headline_score_ensemble(headline: str) -> np.ndarray:
    a = sentiment_a(headline)[0]
    b = sentiment_b(headline)[0]
    return (model_to_vector(a) + model_to_vector(b)) / 2.0

def aggregate_headlines_vectors(vectors: List[np.ndarray]) -> np.ndarray:
    if not vectors:
        return np.array([0.0,1.0,0.0])
    mean_vec = np.mean(vectors, axis=0)
    total = mean_vec.sum()
    return mean_vec / total if total > 0 else np.array([0.0,1.0,0.0])

def vector_to_score(vec: np.ndarray) -> float:
    neg, neu, pos = vec.tolist()
    return max(0.0, min(1.0, pos + 0.5 * neu))

# -----------------------------
# Decay utilities
# -----------------------------
def get_decay_factor(num_headlines: int, max_headlines: int = MAX_HEADLINES,
                     min_decay: float = 0.6, max_decay: float = 0.95) -> float:
    ratio = min(num_headlines / max_headlines, 1.0)
    return min_decay + ratio * (max_decay - min_decay)

# -----------------------------
# FastAPI app
# -----------------------------
app = FastAPI(title="Financial Sentiment API")

class StocksRequest(BaseModel):
    stocks: List[str]

@cached(stock_cache)
def analyze_single_stock(stock: str) -> float | str:
    # Fetch headlines
    headlines = fetch_headlines(stock)
    headlines = [h for h in headlines if h and len(h.strip()) > 10]

    if not headlines or len(headlines) < 2:
        return "NO_DATA"

    # Ensemble sentiment
    vectors = [headline_score_ensemble(h) for h in headlines]
    agg = aggregate_headlines_vectors(vectors)
    raw_score = vector_to_score(agg)

    # Apply decay-weighted hybrid
    decay = get_decay_factor(len(headlines))
    hybrid_score = 0.7 * raw_score + 0.3 * (0.5 + decay * (raw_score - 0.5))

    # Market momentum adjustment (5-day price change)
    try:
        ticker = yf.Ticker(stock)
        hist = ticker.history(period="5d")
        if len(hist) >= 2:
            change = (hist["Close"].iloc[-1] - hist["Close"].iloc[0]) / hist["Close"].iloc[0]
            momentum_correction = np.clip(change * 2, -0.2, 0.2)  # ±0.2 max
            final_score = np.clip(hybrid_score + momentum_correction, 0, 1)
        else:
            final_score = hybrid_score
    except Exception as e:
        print(f"[Market momentum error] {e}")
        final_score = hybrid_score

    return round(final_score, 2)

@app.get("/")
def root():
    return {"message": "Fin-senti API is live! Use POST /analyze"}

@app.post("/analyze")
def analyze(req: StocksRequest):
    results = {}
    for stock in req.stocks:
        results[stock] = analyze_single_stock(stock)
    return results

if __name__ == "__main__":
    import uvicorn
    port = int(os.environ.get("PORT", 7860))
    uvicorn.run(app, host="0.0.0.0", port=port)