OmniGen2-2 / omnigen2 /models /transformers /transformer_omnigen2.py
sienna223's picture
init
119e1fd
import warnings
import itertools
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
from einops import rearrange
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import PeftAdapterMixin
from diffusers.loaders.single_file_model import FromOriginalModelMixin
from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
from diffusers.models.attention_processor import Attention
from diffusers.models.modeling_outputs import Transformer2DModelOutput
from diffusers.models.modeling_utils import ModelMixin
from ..attention_processor import OmniGen2AttnProcessorFlash2Varlen
from .repo import OmniGen2RotaryPosEmbed
from .block_lumina2 import LuminaLayerNormContinuous, LuminaRMSNormZero, LuminaFeedForward, Lumina2CombinedTimestepCaptionEmbedding
try:
from ...ops.triton.layer_norm import RMSNorm as FusedRMSNorm
FUSEDRMSNORM_AVALIBLE = True
except ImportError:
FUSEDRMSNORM_AVALIBLE = False
warnings.warn("Cannot import FusedRMSNorm, falling back to vanilla implementation")
logger = logging.get_logger(__name__)
class OmniGen2TransformerBlock(nn.Module):
"""
Transformer block for OmniGen2 model.
This block implements a transformer layer with:
- Multi-head attention with flash attention
- Feed-forward network with SwiGLU activation
- RMS normalization
- Optional modulation for conditional generation
Args:
dim: Dimension of the input and output tensors
num_attention_heads: Number of attention heads
num_kv_heads: Number of key-value heads
multiple_of: Multiple of which the hidden dimension should be
ffn_dim_multiplier: Multiplier for the feed-forward network dimension
norm_eps: Epsilon value for normalization layers
modulation: Whether to use modulation for conditional generation
use_fused_rms_norm: Whether to use fused RMS normalization
use_fused_swiglu: Whether to use fused SwiGLU activation
"""
def __init__(
self,
dim: int,
num_attention_heads: int,
num_kv_heads: int,
multiple_of: int,
ffn_dim_multiplier: float,
norm_eps: float,
modulation: bool = True,
use_fused_rms_norm: bool = True,
use_fused_swiglu: bool = True,
) -> None:
"""Initialize the transformer block."""
super().__init__()
self.head_dim = dim // num_attention_heads
self.modulation = modulation
# Initialize attention layer
self.attn = Attention(
query_dim=dim,
cross_attention_dim=None,
dim_head=dim // num_attention_heads,
qk_norm="rms_norm",
heads=num_attention_heads,
kv_heads=num_kv_heads,
eps=1e-5,
bias=False,
out_bias=False,
processor=OmniGen2AttnProcessorFlash2Varlen(),
)
# Initialize feed-forward network
self.feed_forward = LuminaFeedForward(
dim=dim,
inner_dim=4 * dim,
multiple_of=multiple_of,
ffn_dim_multiplier=ffn_dim_multiplier,
use_fused_swiglu=use_fused_swiglu,
)
# Initialize normalization layers
if modulation:
self.norm1 = LuminaRMSNormZero(
embedding_dim=dim,
norm_eps=norm_eps,
norm_elementwise_affine=True,
use_fused_rms_norm=use_fused_rms_norm,
)
else:
if use_fused_rms_norm:
if not FUSEDRMSNORM_AVALIBLE:
raise ImportError("FusedRMSNorm is not available")
self.norm1 = FusedRMSNorm(dim, eps=norm_eps)
else:
self.norm1 = nn.RMSNorm(dim, eps=norm_eps)
if use_fused_rms_norm:
if not FUSEDRMSNORM_AVALIBLE:
raise ImportError("FusedRMSNorm is not available")
self.ffn_norm1 = FusedRMSNorm(dim, eps=norm_eps)
self.norm2 = FusedRMSNorm(dim, eps=norm_eps)
self.ffn_norm2 = FusedRMSNorm(dim, eps=norm_eps)
else:
self.ffn_norm1 = nn.RMSNorm(dim, eps=norm_eps)
self.norm2 = nn.RMSNorm(dim, eps=norm_eps)
self.ffn_norm2 = nn.RMSNorm(dim, eps=norm_eps)
self.initialize_weights()
def initialize_weights(self) -> None:
"""
Initialize the weights of the transformer block.
Uses Xavier uniform initialization for linear layers and zero initialization for biases.
"""
nn.init.xavier_uniform_(self.attn.to_q.weight)
nn.init.xavier_uniform_(self.attn.to_k.weight)
nn.init.xavier_uniform_(self.attn.to_v.weight)
nn.init.xavier_uniform_(self.attn.to_out[0].weight)
nn.init.xavier_uniform_(self.feed_forward.linear_1.weight)
nn.init.xavier_uniform_(self.feed_forward.linear_2.weight)
nn.init.xavier_uniform_(self.feed_forward.linear_3.weight)
if self.modulation:
nn.init.zeros_(self.norm1.linear.weight)
nn.init.zeros_(self.norm1.linear.bias)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
image_rotary_emb: torch.Tensor,
temb: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
Forward pass of the transformer block.
Args:
hidden_states: Input hidden states tensor
attention_mask: Attention mask tensor
image_rotary_emb: Rotary embeddings for image tokens
temb: Optional timestep embedding tensor
Returns:
torch.Tensor: Output hidden states after transformer block processing
"""
if self.modulation:
if temb is None:
raise ValueError("temb must be provided when modulation is enabled")
norm_hidden_states, gate_msa, scale_mlp, gate_mlp = self.norm1(hidden_states, temb)
attn_output = self.attn(
hidden_states=norm_hidden_states,
encoder_hidden_states=norm_hidden_states,
attention_mask=attention_mask,
image_rotary_emb=image_rotary_emb,
)
hidden_states = hidden_states + gate_msa.unsqueeze(1).tanh() * self.norm2(attn_output)
mlp_output = self.feed_forward(self.ffn_norm1(hidden_states) * (1 + scale_mlp.unsqueeze(1)))
hidden_states = hidden_states + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(mlp_output)
else:
norm_hidden_states = self.norm1(hidden_states)
attn_output = self.attn(
hidden_states=norm_hidden_states,
encoder_hidden_states=norm_hidden_states,
attention_mask=attention_mask,
image_rotary_emb=image_rotary_emb,
)
hidden_states = hidden_states + self.norm2(attn_output)
mlp_output = self.feed_forward(self.ffn_norm1(hidden_states))
hidden_states = hidden_states + self.ffn_norm2(mlp_output)
return hidden_states
class OmniGen2Transformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
"""
OmniGen2 Transformer 2D Model.
A transformer-based diffusion model for image generation with:
- Patch-based image processing
- Rotary position embeddings
- Multi-head attention
- Conditional generation support
Args:
patch_size: Size of image patches
in_channels: Number of input channels
out_channels: Number of output channels (defaults to in_channels)
hidden_size: Size of hidden layers
num_layers: Number of transformer layers
num_refiner_layers: Number of refiner layers
num_attention_heads: Number of attention heads
num_kv_heads: Number of key-value heads
multiple_of: Multiple of which the hidden dimension should be
ffn_dim_multiplier: Multiplier for feed-forward network dimension
norm_eps: Epsilon value for normalization layers
axes_dim_rope: Dimensions for rotary position embeddings
axes_lens: Lengths for rotary position embeddings
text_feat_dim: Dimension of text features
timestep_scale: Scale factor for timestep embeddings
use_fused_rms_norm: Whether to use fused RMS normalization
use_fused_swiglu: Whether to use fused SwiGLU activation
"""
_supports_gradient_checkpointing = True
_no_split_modules = ["Omnigen2TransformerBlock"]
_skip_layerwise_casting_patterns = ["x_embedder", "norm"]
@register_to_config
def __init__(
self,
patch_size: int = 2,
in_channels: int = 16,
out_channels: Optional[int] = None,
hidden_size: int = 2304,
num_layers: int = 26,
num_refiner_layers: int = 2,
num_attention_heads: int = 24,
num_kv_heads: int = 8,
multiple_of: int = 256,
ffn_dim_multiplier: Optional[float] = None,
norm_eps: float = 1e-5,
axes_dim_rope: Tuple[int, int, int] = (32, 32, 32),
axes_lens: Tuple[int, int, int] = (300, 512, 512),
text_feat_dim: int = 1024,
timestep_scale: float = 1.0,
use_fused_rms_norm: bool = True,
use_fused_swiglu: bool = True,
) -> None:
"""Initialize the OmniGen2 transformer model."""
super().__init__()
# Validate configuration
if (hidden_size // num_attention_heads) != sum(axes_dim_rope):
raise ValueError(
f"hidden_size // num_attention_heads ({hidden_size // num_attention_heads}) "
f"must equal sum(axes_dim_rope) ({sum(axes_dim_rope)})"
)
self.out_channels = out_channels or in_channels
# Initialize embeddings
self.rope_embedder = OmniGen2RotaryPosEmbed(
theta=10000,
axes_dim=axes_dim_rope,
axes_lens=axes_lens,
patch_size=patch_size,
)
self.x_embedder = nn.Linear(
in_features=patch_size * patch_size * in_channels,
out_features=hidden_size,
)
self.ref_image_patch_embedder = nn.Linear(
in_features=patch_size * patch_size * in_channels,
out_features=hidden_size,
)
self.time_caption_embed = Lumina2CombinedTimestepCaptionEmbedding(
hidden_size=hidden_size,
text_feat_dim=text_feat_dim,
norm_eps=norm_eps,
timestep_scale=timestep_scale,
use_fused_rms_norm=use_fused_rms_norm,
)
# Initialize transformer blocks
self.noise_refiner = nn.ModuleList([
OmniGen2TransformerBlock(
hidden_size,
num_attention_heads,
num_kv_heads,
multiple_of,
ffn_dim_multiplier,
norm_eps,
modulation=True,
use_fused_rms_norm=use_fused_rms_norm,
use_fused_swiglu=use_fused_swiglu,
)
for _ in range(num_refiner_layers)
])
self.ref_image_refiner = nn.ModuleList([
OmniGen2TransformerBlock(
hidden_size,
num_attention_heads,
num_kv_heads,
multiple_of,
ffn_dim_multiplier,
norm_eps,
modulation=True,
use_fused_rms_norm=use_fused_rms_norm,
use_fused_swiglu=use_fused_swiglu,
)
for _ in range(num_refiner_layers)
])
self.context_refiner = nn.ModuleList(
[
OmniGen2TransformerBlock(
hidden_size,
num_attention_heads,
num_kv_heads,
multiple_of,
ffn_dim_multiplier,
norm_eps,
modulation=False,
use_fused_rms_norm=use_fused_rms_norm,
use_fused_swiglu=use_fused_swiglu
)
for _ in range(num_refiner_layers)
]
)
# 3. Transformer blocks
self.layers = nn.ModuleList(
[
OmniGen2TransformerBlock(
hidden_size,
num_attention_heads,
num_kv_heads,
multiple_of,
ffn_dim_multiplier,
norm_eps,
modulation=True,
use_fused_rms_norm=use_fused_rms_norm,
use_fused_swiglu=use_fused_swiglu
)
for _ in range(num_layers)
]
)
# 4. Output norm & projection
self.norm_out = LuminaLayerNormContinuous(
embedding_dim=hidden_size,
conditioning_embedding_dim=min(hidden_size, 1024),
elementwise_affine=False,
eps=1e-6,
bias=True,
out_dim=patch_size * patch_size * self.out_channels,
use_fused_rms_norm=use_fused_rms_norm,
)
# Add learnable embeddings to distinguish different images
self.image_index_embedding = nn.Parameter(torch.randn(5, hidden_size)) # support max 5 ref images
self.gradient_checkpointing = False
self.initialize_weights()
def initialize_weights(self) -> None:
"""
Initialize the weights of the model.
Uses Xavier uniform initialization for linear layers.
"""
nn.init.xavier_uniform_(self.x_embedder.weight)
nn.init.constant_(self.x_embedder.bias, 0.0)
nn.init.xavier_uniform_(self.ref_image_patch_embedder.weight)
nn.init.constant_(self.ref_image_patch_embedder.bias, 0.0)
nn.init.zeros_(self.norm_out.linear_1.weight)
nn.init.zeros_(self.norm_out.linear_1.bias)
nn.init.zeros_(self.norm_out.linear_2.weight)
nn.init.zeros_(self.norm_out.linear_2.bias)
nn.init.normal_(self.image_index_embedding, std=0.02)
def img_patch_embed_and_refine(
self,
hidden_states,
ref_image_hidden_states,
padded_img_mask,
padded_ref_img_mask,
noise_rotary_emb,
ref_img_rotary_emb,
l_effective_ref_img_len,
l_effective_img_len,
temb
):
batch_size = len(hidden_states)
max_combined_img_len = max([img_len + sum(ref_img_len) for img_len, ref_img_len in zip(l_effective_img_len, l_effective_ref_img_len)])
hidden_states = self.x_embedder(hidden_states)
ref_image_hidden_states = self.ref_image_patch_embedder(ref_image_hidden_states)
for i in range(batch_size):
shift = 0
for j, ref_img_len in enumerate(l_effective_ref_img_len[i]):
ref_image_hidden_states[i, shift:shift + ref_img_len, :] = ref_image_hidden_states[i, shift:shift + ref_img_len, :] + self.image_index_embedding[j]
shift += ref_img_len
for layer in self.noise_refiner:
hidden_states = layer(hidden_states, padded_img_mask, noise_rotary_emb, temb)
flat_l_effective_ref_img_len = list(itertools.chain(*l_effective_ref_img_len))
num_ref_images = len(flat_l_effective_ref_img_len)
max_ref_img_len = max(flat_l_effective_ref_img_len)
batch_ref_img_mask = ref_image_hidden_states.new_zeros(num_ref_images, max_ref_img_len, dtype=torch.bool)
batch_ref_image_hidden_states = ref_image_hidden_states.new_zeros(num_ref_images, max_ref_img_len, self.config.hidden_size)
batch_ref_img_rotary_emb = hidden_states.new_zeros(num_ref_images, max_ref_img_len, ref_img_rotary_emb.shape[-1], dtype=ref_img_rotary_emb.dtype)
batch_temb = temb.new_zeros(num_ref_images, *temb.shape[1:], dtype=temb.dtype)
# sequence of ref imgs to batch
idx = 0
for i in range(batch_size):
shift = 0
for ref_img_len in l_effective_ref_img_len[i]:
batch_ref_img_mask[idx, :ref_img_len] = True
batch_ref_image_hidden_states[idx, :ref_img_len] = ref_image_hidden_states[i, shift:shift + ref_img_len]
batch_ref_img_rotary_emb[idx, :ref_img_len] = ref_img_rotary_emb[i, shift:shift + ref_img_len]
batch_temb[idx] = temb[i]
shift += ref_img_len
idx += 1
# refine ref imgs separately
for layer in self.ref_image_refiner:
batch_ref_image_hidden_states = layer(batch_ref_image_hidden_states, batch_ref_img_mask, batch_ref_img_rotary_emb, batch_temb)
# batch of ref imgs to sequence
idx = 0
for i in range(batch_size):
shift = 0
for ref_img_len in l_effective_ref_img_len[i]:
ref_image_hidden_states[i, shift:shift + ref_img_len] = batch_ref_image_hidden_states[idx, :ref_img_len]
shift += ref_img_len
idx += 1
combined_img_hidden_states = hidden_states.new_zeros(batch_size, max_combined_img_len, self.config.hidden_size)
for i, (ref_img_len, img_len) in enumerate(zip(l_effective_ref_img_len, l_effective_img_len)):
combined_img_hidden_states[i, :sum(ref_img_len)] = ref_image_hidden_states[i, :sum(ref_img_len)]
combined_img_hidden_states[i, sum(ref_img_len):sum(ref_img_len) + img_len] = hidden_states[i, :img_len]
return combined_img_hidden_states
def flat_and_pad_to_seq(self, hidden_states, ref_image_hidden_states):
batch_size = len(hidden_states)
p = self.config.patch_size
device = hidden_states[0].device
img_sizes = [(img.size(1), img.size(2)) for img in hidden_states]
l_effective_img_len = [(H // p) * (W // p) for (H, W) in img_sizes]
if ref_image_hidden_states is not None:
ref_img_sizes = [[(img.size(1), img.size(2)) for img in imgs] if imgs is not None else None for imgs in ref_image_hidden_states]
l_effective_ref_img_len = [[(ref_img_size[0] // p) * (ref_img_size[1] // p) for ref_img_size in _ref_img_sizes] if _ref_img_sizes is not None else [0] for _ref_img_sizes in ref_img_sizes]
else:
ref_img_sizes = [None for _ in range(batch_size)]
l_effective_ref_img_len = [[0] for _ in range(batch_size)]
max_ref_img_len = max([sum(ref_img_len) for ref_img_len in l_effective_ref_img_len])
max_img_len = max(l_effective_img_len)
# ref image patch embeddings
flat_ref_img_hidden_states = []
for i in range(batch_size):
if ref_img_sizes[i] is not None:
imgs = []
for ref_img in ref_image_hidden_states[i]:
C, H, W = ref_img.size()
ref_img = rearrange(ref_img, 'c (h p1) (w p2) -> (h w) (p1 p2 c)', p1=p, p2=p)
imgs.append(ref_img)
img = torch.cat(imgs, dim=0)
flat_ref_img_hidden_states.append(img)
else:
flat_ref_img_hidden_states.append(None)
# image patch embeddings
flat_hidden_states = []
for i in range(batch_size):
img = hidden_states[i]
C, H, W = img.size()
img = rearrange(img, 'c (h p1) (w p2) -> (h w) (p1 p2 c)', p1=p, p2=p)
flat_hidden_states.append(img)
padded_ref_img_hidden_states = torch.zeros(batch_size, max_ref_img_len, flat_hidden_states[0].shape[-1], device=device, dtype=flat_hidden_states[0].dtype)
padded_ref_img_mask = torch.zeros(batch_size, max_ref_img_len, dtype=torch.bool, device=device)
for i in range(batch_size):
if ref_img_sizes[i] is not None:
padded_ref_img_hidden_states[i, :sum(l_effective_ref_img_len[i])] = flat_ref_img_hidden_states[i]
padded_ref_img_mask[i, :sum(l_effective_ref_img_len[i])] = True
padded_hidden_states = torch.zeros(batch_size, max_img_len, flat_hidden_states[0].shape[-1], device=device, dtype=flat_hidden_states[0].dtype)
padded_img_mask = torch.zeros(batch_size, max_img_len, dtype=torch.bool, device=device)
for i in range(batch_size):
padded_hidden_states[i, :l_effective_img_len[i]] = flat_hidden_states[i]
padded_img_mask[i, :l_effective_img_len[i]] = True
return (
padded_hidden_states,
padded_ref_img_hidden_states,
padded_img_mask,
padded_ref_img_mask,
l_effective_ref_img_len,
l_effective_img_len,
ref_img_sizes,
img_sizes,
)
def forward(
self,
hidden_states: Union[torch.Tensor, List[torch.Tensor]],
timestep: torch.Tensor,
text_hidden_states: torch.Tensor,
freqs_cis: torch.Tensor,
text_attention_mask: torch.Tensor,
ref_image_hidden_states: Optional[List[List[torch.Tensor]]] = None,
attention_kwargs: Optional[Dict[str, Any]] = None,
return_dict: bool = False,
) -> Union[torch.Tensor, Transformer2DModelOutput]:
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
)
# 1. Condition, positional & patch embedding
batch_size = len(hidden_states)
is_hidden_states_tensor = isinstance(hidden_states, torch.Tensor)
if is_hidden_states_tensor:
assert hidden_states.ndim == 4
hidden_states = [_hidden_states for _hidden_states in hidden_states]
device = hidden_states[0].device
temb, text_hidden_states = self.time_caption_embed(timestep, text_hidden_states, hidden_states[0].dtype)
(
hidden_states,
ref_image_hidden_states,
img_mask,
ref_img_mask,
l_effective_ref_img_len,
l_effective_img_len,
ref_img_sizes,
img_sizes,
) = self.flat_and_pad_to_seq(hidden_states, ref_image_hidden_states)
(
context_rotary_emb,
ref_img_rotary_emb,
noise_rotary_emb,
rotary_emb,
encoder_seq_lengths,
seq_lengths,
) = self.rope_embedder(
freqs_cis,
text_attention_mask,
l_effective_ref_img_len,
l_effective_img_len,
ref_img_sizes,
img_sizes,
device,
)
# 2. Context refinement
for layer in self.context_refiner:
text_hidden_states = layer(text_hidden_states, text_attention_mask, context_rotary_emb)
combined_img_hidden_states = self.img_patch_embed_and_refine(
hidden_states,
ref_image_hidden_states,
img_mask,
ref_img_mask,
noise_rotary_emb,
ref_img_rotary_emb,
l_effective_ref_img_len,
l_effective_img_len,
temb,
)
# 3. Joint Transformer blocks
max_seq_len = max(seq_lengths)
attention_mask = hidden_states.new_zeros(batch_size, max_seq_len, dtype=torch.bool)
joint_hidden_states = hidden_states.new_zeros(batch_size, max_seq_len, self.config.hidden_size)
for i, (encoder_seq_len, seq_len) in enumerate(zip(encoder_seq_lengths, seq_lengths)):
attention_mask[i, :seq_len] = True
joint_hidden_states[i, :encoder_seq_len] = text_hidden_states[i, :encoder_seq_len]
joint_hidden_states[i, encoder_seq_len:seq_len] = combined_img_hidden_states[i, :seq_len - encoder_seq_len]
hidden_states = joint_hidden_states
for layer_idx, layer in enumerate(self.layers):
if torch.is_grad_enabled() and self.gradient_checkpointing:
hidden_states = self._gradient_checkpointing_func(
layer, hidden_states, attention_mask, rotary_emb, temb
)
else:
hidden_states = layer(hidden_states, attention_mask, rotary_emb, temb)
# 4. Output norm & projection
hidden_states = self.norm_out(hidden_states, temb)
p = self.config.patch_size
output = []
for i, (img_size, img_len, seq_len) in enumerate(zip(img_sizes, l_effective_img_len, seq_lengths)):
height, width = img_size
output.append(rearrange(hidden_states[i][seq_len - img_len:seq_len], '(h w) (p1 p2 c) -> c (h p1) (w p2)', h=height // p, w=width // p, p1=p, p2=p))
if is_hidden_states_tensor:
output = torch.stack(output, dim=0)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return output
return Transformer2DModelOutput(sample=output)