Spaces:
Build error
Build error
import warnings | |
import itertools | |
from typing import Any, Dict, List, Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
from einops import rearrange | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.loaders import PeftAdapterMixin | |
from diffusers.loaders.single_file_model import FromOriginalModelMixin | |
from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers | |
from diffusers.models.attention_processor import Attention | |
from diffusers.models.modeling_outputs import Transformer2DModelOutput | |
from diffusers.models.modeling_utils import ModelMixin | |
from ..attention_processor import OmniGen2AttnProcessorFlash2Varlen | |
from .repo import OmniGen2RotaryPosEmbed | |
from .block_lumina2 import LuminaLayerNormContinuous, LuminaRMSNormZero, LuminaFeedForward, Lumina2CombinedTimestepCaptionEmbedding | |
try: | |
from ...ops.triton.layer_norm import RMSNorm as FusedRMSNorm | |
FUSEDRMSNORM_AVALIBLE = True | |
except ImportError: | |
FUSEDRMSNORM_AVALIBLE = False | |
warnings.warn("Cannot import FusedRMSNorm, falling back to vanilla implementation") | |
logger = logging.get_logger(__name__) | |
class OmniGen2TransformerBlock(nn.Module): | |
""" | |
Transformer block for OmniGen2 model. | |
This block implements a transformer layer with: | |
- Multi-head attention with flash attention | |
- Feed-forward network with SwiGLU activation | |
- RMS normalization | |
- Optional modulation for conditional generation | |
Args: | |
dim: Dimension of the input and output tensors | |
num_attention_heads: Number of attention heads | |
num_kv_heads: Number of key-value heads | |
multiple_of: Multiple of which the hidden dimension should be | |
ffn_dim_multiplier: Multiplier for the feed-forward network dimension | |
norm_eps: Epsilon value for normalization layers | |
modulation: Whether to use modulation for conditional generation | |
use_fused_rms_norm: Whether to use fused RMS normalization | |
use_fused_swiglu: Whether to use fused SwiGLU activation | |
""" | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
num_kv_heads: int, | |
multiple_of: int, | |
ffn_dim_multiplier: float, | |
norm_eps: float, | |
modulation: bool = True, | |
use_fused_rms_norm: bool = True, | |
use_fused_swiglu: bool = True, | |
) -> None: | |
"""Initialize the transformer block.""" | |
super().__init__() | |
self.head_dim = dim // num_attention_heads | |
self.modulation = modulation | |
# Initialize attention layer | |
self.attn = Attention( | |
query_dim=dim, | |
cross_attention_dim=None, | |
dim_head=dim // num_attention_heads, | |
qk_norm="rms_norm", | |
heads=num_attention_heads, | |
kv_heads=num_kv_heads, | |
eps=1e-5, | |
bias=False, | |
out_bias=False, | |
processor=OmniGen2AttnProcessorFlash2Varlen(), | |
) | |
# Initialize feed-forward network | |
self.feed_forward = LuminaFeedForward( | |
dim=dim, | |
inner_dim=4 * dim, | |
multiple_of=multiple_of, | |
ffn_dim_multiplier=ffn_dim_multiplier, | |
use_fused_swiglu=use_fused_swiglu, | |
) | |
# Initialize normalization layers | |
if modulation: | |
self.norm1 = LuminaRMSNormZero( | |
embedding_dim=dim, | |
norm_eps=norm_eps, | |
norm_elementwise_affine=True, | |
use_fused_rms_norm=use_fused_rms_norm, | |
) | |
else: | |
if use_fused_rms_norm: | |
if not FUSEDRMSNORM_AVALIBLE: | |
raise ImportError("FusedRMSNorm is not available") | |
self.norm1 = FusedRMSNorm(dim, eps=norm_eps) | |
else: | |
self.norm1 = nn.RMSNorm(dim, eps=norm_eps) | |
if use_fused_rms_norm: | |
if not FUSEDRMSNORM_AVALIBLE: | |
raise ImportError("FusedRMSNorm is not available") | |
self.ffn_norm1 = FusedRMSNorm(dim, eps=norm_eps) | |
self.norm2 = FusedRMSNorm(dim, eps=norm_eps) | |
self.ffn_norm2 = FusedRMSNorm(dim, eps=norm_eps) | |
else: | |
self.ffn_norm1 = nn.RMSNorm(dim, eps=norm_eps) | |
self.norm2 = nn.RMSNorm(dim, eps=norm_eps) | |
self.ffn_norm2 = nn.RMSNorm(dim, eps=norm_eps) | |
self.initialize_weights() | |
def initialize_weights(self) -> None: | |
""" | |
Initialize the weights of the transformer block. | |
Uses Xavier uniform initialization for linear layers and zero initialization for biases. | |
""" | |
nn.init.xavier_uniform_(self.attn.to_q.weight) | |
nn.init.xavier_uniform_(self.attn.to_k.weight) | |
nn.init.xavier_uniform_(self.attn.to_v.weight) | |
nn.init.xavier_uniform_(self.attn.to_out[0].weight) | |
nn.init.xavier_uniform_(self.feed_forward.linear_1.weight) | |
nn.init.xavier_uniform_(self.feed_forward.linear_2.weight) | |
nn.init.xavier_uniform_(self.feed_forward.linear_3.weight) | |
if self.modulation: | |
nn.init.zeros_(self.norm1.linear.weight) | |
nn.init.zeros_(self.norm1.linear.bias) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: torch.Tensor, | |
image_rotary_emb: torch.Tensor, | |
temb: Optional[torch.Tensor] = None, | |
) -> torch.Tensor: | |
""" | |
Forward pass of the transformer block. | |
Args: | |
hidden_states: Input hidden states tensor | |
attention_mask: Attention mask tensor | |
image_rotary_emb: Rotary embeddings for image tokens | |
temb: Optional timestep embedding tensor | |
Returns: | |
torch.Tensor: Output hidden states after transformer block processing | |
""" | |
if self.modulation: | |
if temb is None: | |
raise ValueError("temb must be provided when modulation is enabled") | |
norm_hidden_states, gate_msa, scale_mlp, gate_mlp = self.norm1(hidden_states, temb) | |
attn_output = self.attn( | |
hidden_states=norm_hidden_states, | |
encoder_hidden_states=norm_hidden_states, | |
attention_mask=attention_mask, | |
image_rotary_emb=image_rotary_emb, | |
) | |
hidden_states = hidden_states + gate_msa.unsqueeze(1).tanh() * self.norm2(attn_output) | |
mlp_output = self.feed_forward(self.ffn_norm1(hidden_states) * (1 + scale_mlp.unsqueeze(1))) | |
hidden_states = hidden_states + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(mlp_output) | |
else: | |
norm_hidden_states = self.norm1(hidden_states) | |
attn_output = self.attn( | |
hidden_states=norm_hidden_states, | |
encoder_hidden_states=norm_hidden_states, | |
attention_mask=attention_mask, | |
image_rotary_emb=image_rotary_emb, | |
) | |
hidden_states = hidden_states + self.norm2(attn_output) | |
mlp_output = self.feed_forward(self.ffn_norm1(hidden_states)) | |
hidden_states = hidden_states + self.ffn_norm2(mlp_output) | |
return hidden_states | |
class OmniGen2Transformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin): | |
""" | |
OmniGen2 Transformer 2D Model. | |
A transformer-based diffusion model for image generation with: | |
- Patch-based image processing | |
- Rotary position embeddings | |
- Multi-head attention | |
- Conditional generation support | |
Args: | |
patch_size: Size of image patches | |
in_channels: Number of input channels | |
out_channels: Number of output channels (defaults to in_channels) | |
hidden_size: Size of hidden layers | |
num_layers: Number of transformer layers | |
num_refiner_layers: Number of refiner layers | |
num_attention_heads: Number of attention heads | |
num_kv_heads: Number of key-value heads | |
multiple_of: Multiple of which the hidden dimension should be | |
ffn_dim_multiplier: Multiplier for feed-forward network dimension | |
norm_eps: Epsilon value for normalization layers | |
axes_dim_rope: Dimensions for rotary position embeddings | |
axes_lens: Lengths for rotary position embeddings | |
text_feat_dim: Dimension of text features | |
timestep_scale: Scale factor for timestep embeddings | |
use_fused_rms_norm: Whether to use fused RMS normalization | |
use_fused_swiglu: Whether to use fused SwiGLU activation | |
""" | |
_supports_gradient_checkpointing = True | |
_no_split_modules = ["Omnigen2TransformerBlock"] | |
_skip_layerwise_casting_patterns = ["x_embedder", "norm"] | |
def __init__( | |
self, | |
patch_size: int = 2, | |
in_channels: int = 16, | |
out_channels: Optional[int] = None, | |
hidden_size: int = 2304, | |
num_layers: int = 26, | |
num_refiner_layers: int = 2, | |
num_attention_heads: int = 24, | |
num_kv_heads: int = 8, | |
multiple_of: int = 256, | |
ffn_dim_multiplier: Optional[float] = None, | |
norm_eps: float = 1e-5, | |
axes_dim_rope: Tuple[int, int, int] = (32, 32, 32), | |
axes_lens: Tuple[int, int, int] = (300, 512, 512), | |
text_feat_dim: int = 1024, | |
timestep_scale: float = 1.0, | |
use_fused_rms_norm: bool = True, | |
use_fused_swiglu: bool = True, | |
) -> None: | |
"""Initialize the OmniGen2 transformer model.""" | |
super().__init__() | |
# Validate configuration | |
if (hidden_size // num_attention_heads) != sum(axes_dim_rope): | |
raise ValueError( | |
f"hidden_size // num_attention_heads ({hidden_size // num_attention_heads}) " | |
f"must equal sum(axes_dim_rope) ({sum(axes_dim_rope)})" | |
) | |
self.out_channels = out_channels or in_channels | |
# Initialize embeddings | |
self.rope_embedder = OmniGen2RotaryPosEmbed( | |
theta=10000, | |
axes_dim=axes_dim_rope, | |
axes_lens=axes_lens, | |
patch_size=patch_size, | |
) | |
self.x_embedder = nn.Linear( | |
in_features=patch_size * patch_size * in_channels, | |
out_features=hidden_size, | |
) | |
self.ref_image_patch_embedder = nn.Linear( | |
in_features=patch_size * patch_size * in_channels, | |
out_features=hidden_size, | |
) | |
self.time_caption_embed = Lumina2CombinedTimestepCaptionEmbedding( | |
hidden_size=hidden_size, | |
text_feat_dim=text_feat_dim, | |
norm_eps=norm_eps, | |
timestep_scale=timestep_scale, | |
use_fused_rms_norm=use_fused_rms_norm, | |
) | |
# Initialize transformer blocks | |
self.noise_refiner = nn.ModuleList([ | |
OmniGen2TransformerBlock( | |
hidden_size, | |
num_attention_heads, | |
num_kv_heads, | |
multiple_of, | |
ffn_dim_multiplier, | |
norm_eps, | |
modulation=True, | |
use_fused_rms_norm=use_fused_rms_norm, | |
use_fused_swiglu=use_fused_swiglu, | |
) | |
for _ in range(num_refiner_layers) | |
]) | |
self.ref_image_refiner = nn.ModuleList([ | |
OmniGen2TransformerBlock( | |
hidden_size, | |
num_attention_heads, | |
num_kv_heads, | |
multiple_of, | |
ffn_dim_multiplier, | |
norm_eps, | |
modulation=True, | |
use_fused_rms_norm=use_fused_rms_norm, | |
use_fused_swiglu=use_fused_swiglu, | |
) | |
for _ in range(num_refiner_layers) | |
]) | |
self.context_refiner = nn.ModuleList( | |
[ | |
OmniGen2TransformerBlock( | |
hidden_size, | |
num_attention_heads, | |
num_kv_heads, | |
multiple_of, | |
ffn_dim_multiplier, | |
norm_eps, | |
modulation=False, | |
use_fused_rms_norm=use_fused_rms_norm, | |
use_fused_swiglu=use_fused_swiglu | |
) | |
for _ in range(num_refiner_layers) | |
] | |
) | |
# 3. Transformer blocks | |
self.layers = nn.ModuleList( | |
[ | |
OmniGen2TransformerBlock( | |
hidden_size, | |
num_attention_heads, | |
num_kv_heads, | |
multiple_of, | |
ffn_dim_multiplier, | |
norm_eps, | |
modulation=True, | |
use_fused_rms_norm=use_fused_rms_norm, | |
use_fused_swiglu=use_fused_swiglu | |
) | |
for _ in range(num_layers) | |
] | |
) | |
# 4. Output norm & projection | |
self.norm_out = LuminaLayerNormContinuous( | |
embedding_dim=hidden_size, | |
conditioning_embedding_dim=min(hidden_size, 1024), | |
elementwise_affine=False, | |
eps=1e-6, | |
bias=True, | |
out_dim=patch_size * patch_size * self.out_channels, | |
use_fused_rms_norm=use_fused_rms_norm, | |
) | |
# Add learnable embeddings to distinguish different images | |
self.image_index_embedding = nn.Parameter(torch.randn(5, hidden_size)) # support max 5 ref images | |
self.gradient_checkpointing = False | |
self.initialize_weights() | |
def initialize_weights(self) -> None: | |
""" | |
Initialize the weights of the model. | |
Uses Xavier uniform initialization for linear layers. | |
""" | |
nn.init.xavier_uniform_(self.x_embedder.weight) | |
nn.init.constant_(self.x_embedder.bias, 0.0) | |
nn.init.xavier_uniform_(self.ref_image_patch_embedder.weight) | |
nn.init.constant_(self.ref_image_patch_embedder.bias, 0.0) | |
nn.init.zeros_(self.norm_out.linear_1.weight) | |
nn.init.zeros_(self.norm_out.linear_1.bias) | |
nn.init.zeros_(self.norm_out.linear_2.weight) | |
nn.init.zeros_(self.norm_out.linear_2.bias) | |
nn.init.normal_(self.image_index_embedding, std=0.02) | |
def img_patch_embed_and_refine( | |
self, | |
hidden_states, | |
ref_image_hidden_states, | |
padded_img_mask, | |
padded_ref_img_mask, | |
noise_rotary_emb, | |
ref_img_rotary_emb, | |
l_effective_ref_img_len, | |
l_effective_img_len, | |
temb | |
): | |
batch_size = len(hidden_states) | |
max_combined_img_len = max([img_len + sum(ref_img_len) for img_len, ref_img_len in zip(l_effective_img_len, l_effective_ref_img_len)]) | |
hidden_states = self.x_embedder(hidden_states) | |
ref_image_hidden_states = self.ref_image_patch_embedder(ref_image_hidden_states) | |
for i in range(batch_size): | |
shift = 0 | |
for j, ref_img_len in enumerate(l_effective_ref_img_len[i]): | |
ref_image_hidden_states[i, shift:shift + ref_img_len, :] = ref_image_hidden_states[i, shift:shift + ref_img_len, :] + self.image_index_embedding[j] | |
shift += ref_img_len | |
for layer in self.noise_refiner: | |
hidden_states = layer(hidden_states, padded_img_mask, noise_rotary_emb, temb) | |
flat_l_effective_ref_img_len = list(itertools.chain(*l_effective_ref_img_len)) | |
num_ref_images = len(flat_l_effective_ref_img_len) | |
max_ref_img_len = max(flat_l_effective_ref_img_len) | |
batch_ref_img_mask = ref_image_hidden_states.new_zeros(num_ref_images, max_ref_img_len, dtype=torch.bool) | |
batch_ref_image_hidden_states = ref_image_hidden_states.new_zeros(num_ref_images, max_ref_img_len, self.config.hidden_size) | |
batch_ref_img_rotary_emb = hidden_states.new_zeros(num_ref_images, max_ref_img_len, ref_img_rotary_emb.shape[-1], dtype=ref_img_rotary_emb.dtype) | |
batch_temb = temb.new_zeros(num_ref_images, *temb.shape[1:], dtype=temb.dtype) | |
# sequence of ref imgs to batch | |
idx = 0 | |
for i in range(batch_size): | |
shift = 0 | |
for ref_img_len in l_effective_ref_img_len[i]: | |
batch_ref_img_mask[idx, :ref_img_len] = True | |
batch_ref_image_hidden_states[idx, :ref_img_len] = ref_image_hidden_states[i, shift:shift + ref_img_len] | |
batch_ref_img_rotary_emb[idx, :ref_img_len] = ref_img_rotary_emb[i, shift:shift + ref_img_len] | |
batch_temb[idx] = temb[i] | |
shift += ref_img_len | |
idx += 1 | |
# refine ref imgs separately | |
for layer in self.ref_image_refiner: | |
batch_ref_image_hidden_states = layer(batch_ref_image_hidden_states, batch_ref_img_mask, batch_ref_img_rotary_emb, batch_temb) | |
# batch of ref imgs to sequence | |
idx = 0 | |
for i in range(batch_size): | |
shift = 0 | |
for ref_img_len in l_effective_ref_img_len[i]: | |
ref_image_hidden_states[i, shift:shift + ref_img_len] = batch_ref_image_hidden_states[idx, :ref_img_len] | |
shift += ref_img_len | |
idx += 1 | |
combined_img_hidden_states = hidden_states.new_zeros(batch_size, max_combined_img_len, self.config.hidden_size) | |
for i, (ref_img_len, img_len) in enumerate(zip(l_effective_ref_img_len, l_effective_img_len)): | |
combined_img_hidden_states[i, :sum(ref_img_len)] = ref_image_hidden_states[i, :sum(ref_img_len)] | |
combined_img_hidden_states[i, sum(ref_img_len):sum(ref_img_len) + img_len] = hidden_states[i, :img_len] | |
return combined_img_hidden_states | |
def flat_and_pad_to_seq(self, hidden_states, ref_image_hidden_states): | |
batch_size = len(hidden_states) | |
p = self.config.patch_size | |
device = hidden_states[0].device | |
img_sizes = [(img.size(1), img.size(2)) for img in hidden_states] | |
l_effective_img_len = [(H // p) * (W // p) for (H, W) in img_sizes] | |
if ref_image_hidden_states is not None: | |
ref_img_sizes = [[(img.size(1), img.size(2)) for img in imgs] if imgs is not None else None for imgs in ref_image_hidden_states] | |
l_effective_ref_img_len = [[(ref_img_size[0] // p) * (ref_img_size[1] // p) for ref_img_size in _ref_img_sizes] if _ref_img_sizes is not None else [0] for _ref_img_sizes in ref_img_sizes] | |
else: | |
ref_img_sizes = [None for _ in range(batch_size)] | |
l_effective_ref_img_len = [[0] for _ in range(batch_size)] | |
max_ref_img_len = max([sum(ref_img_len) for ref_img_len in l_effective_ref_img_len]) | |
max_img_len = max(l_effective_img_len) | |
# ref image patch embeddings | |
flat_ref_img_hidden_states = [] | |
for i in range(batch_size): | |
if ref_img_sizes[i] is not None: | |
imgs = [] | |
for ref_img in ref_image_hidden_states[i]: | |
C, H, W = ref_img.size() | |
ref_img = rearrange(ref_img, 'c (h p1) (w p2) -> (h w) (p1 p2 c)', p1=p, p2=p) | |
imgs.append(ref_img) | |
img = torch.cat(imgs, dim=0) | |
flat_ref_img_hidden_states.append(img) | |
else: | |
flat_ref_img_hidden_states.append(None) | |
# image patch embeddings | |
flat_hidden_states = [] | |
for i in range(batch_size): | |
img = hidden_states[i] | |
C, H, W = img.size() | |
img = rearrange(img, 'c (h p1) (w p2) -> (h w) (p1 p2 c)', p1=p, p2=p) | |
flat_hidden_states.append(img) | |
padded_ref_img_hidden_states = torch.zeros(batch_size, max_ref_img_len, flat_hidden_states[0].shape[-1], device=device, dtype=flat_hidden_states[0].dtype) | |
padded_ref_img_mask = torch.zeros(batch_size, max_ref_img_len, dtype=torch.bool, device=device) | |
for i in range(batch_size): | |
if ref_img_sizes[i] is not None: | |
padded_ref_img_hidden_states[i, :sum(l_effective_ref_img_len[i])] = flat_ref_img_hidden_states[i] | |
padded_ref_img_mask[i, :sum(l_effective_ref_img_len[i])] = True | |
padded_hidden_states = torch.zeros(batch_size, max_img_len, flat_hidden_states[0].shape[-1], device=device, dtype=flat_hidden_states[0].dtype) | |
padded_img_mask = torch.zeros(batch_size, max_img_len, dtype=torch.bool, device=device) | |
for i in range(batch_size): | |
padded_hidden_states[i, :l_effective_img_len[i]] = flat_hidden_states[i] | |
padded_img_mask[i, :l_effective_img_len[i]] = True | |
return ( | |
padded_hidden_states, | |
padded_ref_img_hidden_states, | |
padded_img_mask, | |
padded_ref_img_mask, | |
l_effective_ref_img_len, | |
l_effective_img_len, | |
ref_img_sizes, | |
img_sizes, | |
) | |
def forward( | |
self, | |
hidden_states: Union[torch.Tensor, List[torch.Tensor]], | |
timestep: torch.Tensor, | |
text_hidden_states: torch.Tensor, | |
freqs_cis: torch.Tensor, | |
text_attention_mask: torch.Tensor, | |
ref_image_hidden_states: Optional[List[List[torch.Tensor]]] = None, | |
attention_kwargs: Optional[Dict[str, Any]] = None, | |
return_dict: bool = False, | |
) -> Union[torch.Tensor, Transformer2DModelOutput]: | |
if attention_kwargs is not None: | |
attention_kwargs = attention_kwargs.copy() | |
lora_scale = attention_kwargs.pop("scale", 1.0) | |
else: | |
lora_scale = 1.0 | |
if USE_PEFT_BACKEND: | |
# weight the lora layers by setting `lora_scale` for each PEFT layer | |
scale_lora_layers(self, lora_scale) | |
else: | |
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None: | |
logger.warning( | |
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective." | |
) | |
# 1. Condition, positional & patch embedding | |
batch_size = len(hidden_states) | |
is_hidden_states_tensor = isinstance(hidden_states, torch.Tensor) | |
if is_hidden_states_tensor: | |
assert hidden_states.ndim == 4 | |
hidden_states = [_hidden_states for _hidden_states in hidden_states] | |
device = hidden_states[0].device | |
temb, text_hidden_states = self.time_caption_embed(timestep, text_hidden_states, hidden_states[0].dtype) | |
( | |
hidden_states, | |
ref_image_hidden_states, | |
img_mask, | |
ref_img_mask, | |
l_effective_ref_img_len, | |
l_effective_img_len, | |
ref_img_sizes, | |
img_sizes, | |
) = self.flat_and_pad_to_seq(hidden_states, ref_image_hidden_states) | |
( | |
context_rotary_emb, | |
ref_img_rotary_emb, | |
noise_rotary_emb, | |
rotary_emb, | |
encoder_seq_lengths, | |
seq_lengths, | |
) = self.rope_embedder( | |
freqs_cis, | |
text_attention_mask, | |
l_effective_ref_img_len, | |
l_effective_img_len, | |
ref_img_sizes, | |
img_sizes, | |
device, | |
) | |
# 2. Context refinement | |
for layer in self.context_refiner: | |
text_hidden_states = layer(text_hidden_states, text_attention_mask, context_rotary_emb) | |
combined_img_hidden_states = self.img_patch_embed_and_refine( | |
hidden_states, | |
ref_image_hidden_states, | |
img_mask, | |
ref_img_mask, | |
noise_rotary_emb, | |
ref_img_rotary_emb, | |
l_effective_ref_img_len, | |
l_effective_img_len, | |
temb, | |
) | |
# 3. Joint Transformer blocks | |
max_seq_len = max(seq_lengths) | |
attention_mask = hidden_states.new_zeros(batch_size, max_seq_len, dtype=torch.bool) | |
joint_hidden_states = hidden_states.new_zeros(batch_size, max_seq_len, self.config.hidden_size) | |
for i, (encoder_seq_len, seq_len) in enumerate(zip(encoder_seq_lengths, seq_lengths)): | |
attention_mask[i, :seq_len] = True | |
joint_hidden_states[i, :encoder_seq_len] = text_hidden_states[i, :encoder_seq_len] | |
joint_hidden_states[i, encoder_seq_len:seq_len] = combined_img_hidden_states[i, :seq_len - encoder_seq_len] | |
hidden_states = joint_hidden_states | |
for layer_idx, layer in enumerate(self.layers): | |
if torch.is_grad_enabled() and self.gradient_checkpointing: | |
hidden_states = self._gradient_checkpointing_func( | |
layer, hidden_states, attention_mask, rotary_emb, temb | |
) | |
else: | |
hidden_states = layer(hidden_states, attention_mask, rotary_emb, temb) | |
# 4. Output norm & projection | |
hidden_states = self.norm_out(hidden_states, temb) | |
p = self.config.patch_size | |
output = [] | |
for i, (img_size, img_len, seq_len) in enumerate(zip(img_sizes, l_effective_img_len, seq_lengths)): | |
height, width = img_size | |
output.append(rearrange(hidden_states[i][seq_len - img_len:seq_len], '(h w) (p1 p2 c) -> c (h p1) (w p2)', h=height // p, w=width // p, p1=p, p2=p)) | |
if is_hidden_states_tensor: | |
output = torch.stack(output, dim=0) | |
if USE_PEFT_BACKEND: | |
# remove `lora_scale` from each PEFT layer | |
unscale_lora_layers(self, lora_scale) | |
if not return_dict: | |
return output | |
return Transformer2DModelOutput(sample=output) | |