Spaces:
Running
Running
import streamlit as st | |
import random | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import cv2 | |
# TODO: rename and refactor everything | |
def show_tsne_vis(img_path,title="Representative"): | |
st.write(f'T-SNE Visualization of {title} Cases') | |
st.image(cv2.imread(img_path),caption = "T-SNE Figure") | |
def show_random_samples(image_list,class_name,n=10): | |
rnd_list = random.sample(image_list,n) | |
st.pyplot(visualize_samples(rnd_list,class_name)) | |
def visualize_samples(sample_list,class_name,columns=5): | |
f = plt.figure(figsize=(20,10)) | |
columns = 5 | |
plt.suptitle("Class {0}".format(class_name)) | |
for i, image in enumerate(sample_list): | |
plt.subplot(len(sample_list) / columns + 1, columns, i + 1) | |
plt.imshow(cv2.imread(image.replace("F:/","E:/"))) | |
return f | |
def select_num_interval( | |
param_name: str, limits_list: list, defaults, n_for_hash, **kwargs | |
): | |
st.sidebar.subheader(param_name) | |
min_max_interval = st.sidebar.slider( | |
"", | |
limits_list[0], | |
limits_list[1], | |
defaults, | |
key=hash(param_name + str(n_for_hash)), | |
) | |
return min_max_interval | |
def select_several_nums( | |
param_name, subparam_names, limits_list, defaults_list, n_for_hash, **kwargs | |
): | |
st.sidebar.subheader(param_name) | |
result = [] | |
assert len(limits_list) == len(defaults_list) | |
assert len(subparam_names) == len(defaults_list) | |
for name, limits, defaults in zip(subparam_names, limits_list, defaults_list): | |
result.append( | |
st.sidebar.slider( | |
name, | |
limits[0], | |
limits[1], | |
defaults, | |
key=hash(param_name + name + str(n_for_hash)), | |
) | |
) | |
return tuple(result) | |
def select_min_max( | |
param_name, limits_list, defaults_list, n_for_hash, min_diff=0, **kwargs | |
): | |
assert len(param_name) == 2 | |
result = list( | |
select_num_interval( | |
" & ".join(param_name), limits_list, defaults_list, n_for_hash | |
) | |
) | |
if result[1] - result[0] < min_diff: | |
diff = min_diff - result[1] + result[0] | |
if result[1] + diff <= limits_list[1]: | |
result[1] = result[1] + diff | |
elif result[0] - diff >= limits_list[0]: | |
result[0] = result[0] - diff | |
else: | |
result = limits_list | |
return tuple(result) | |
def select_RGB(param_name, n_for_hash, **kwargs): | |
result = select_several_nums( | |
param_name, | |
subparam_names=["Red", "Green", "Blue"], | |
limits_list=[[0, 255], [0, 255], [0, 255]], | |
defaults_list=[0, 0, 0], | |
n_for_hash=n_for_hash, | |
) | |
return tuple(result) | |
def replace_none(string): | |
if string == "None": | |
return None | |
else: | |
return string | |
def select_radio(param_name, options_list, n_for_hash, **kwargs): | |
st.sidebar.subheader(param_name) | |
result = st.sidebar.radio("", options_list, key=hash(param_name + str(n_for_hash))) | |
return replace_none(result) | |
def select_checkbox(param_name, defaults, n_for_hash, **kwargs): | |
st.sidebar.subheader(param_name) | |
result = st.sidebar.checkbox( | |
"True", defaults, key=hash(param_name + str(n_for_hash)) | |
) | |
return result | |
# dict from param name to function showing this param | |
param2func = { | |
"num_interval": select_num_interval, | |
"several_nums": select_several_nums, | |
"radio": select_radio, | |
"rgb": select_RGB, | |
"checkbox": select_checkbox, | |
"min_max": select_min_max, | |
} |