Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import os | |
| ROOT_FIG_DIR = f'{os.getcwd()}/figures/' | |
| def get_product_dev_page_layout(): | |
| model_details ={ | |
| "Model Description": "EfficientNet is used for transfer learning.", | |
| "Model Type": "Convolutional Neural Nets", | |
| } | |
| dev_details = { | |
| "Training Framework": "Tensorflow Keras", | |
| "Backbone Architeture":"EfficientNetB4", | |
| "Number of classes":4, | |
| "Number of training epochs": 10, | |
| "Dropout rate": 0.2, | |
| "batch_size": 8, | |
| "learning_rate":0.001, | |
| "early_stopping_epochs":10, | |
| "reduce_learning_rate_patience":3, | |
| "source_code":"https://github.com/kaplansinan/MLOps", | |
| } | |
| production_details ={ | |
| "Model size": "26MB", | |
| "Model Input": "(N,180,180,3)", | |
| "Modeul Output":"(N,4)", | |
| "Framework":"ONNXRuntime", | |
| } | |
| hardware_details ={ | |
| "Os System": "Ubuntu 20.14", | |
| "GPU Card": "NVIDIA GeForce 3060 6GB", | |
| } | |
| row2_1, row2_2, row2_3= st.tabs(["General Info", "Development Info", "Production Info"]) | |
| with row2_1: | |
| # st.write("**Architectural Details**") | |
| st.subheader('Architectural Details') | |
| list_test = """<ul> | |
| <li><strong>Model Type: </strong>Convolutional Neural Nets</li> | |
| <li> <strong>Model Description: </strong>An architecture from EfficientNet family is used for transfer learning.</li> | |
| </ul>""" | |
| st.markdown(list_test, unsafe_allow_html=True) | |
| # st.json(model_details) | |
| st.caption('Architeture Visualization') | |
| st.image(f'{ROOT_FIG_DIR}/model_diagram.png') | |
| with st.expander('License: CC BY 4.0 license(Click for details)'): | |
| st.write(""" | |
| The files associated with this dataset are licensed under a Creative Commons Attribution 4.0 International license. What does this mean? | |
| You can share, copy and modify this dataset so long as you give appropriate credit, | |
| provide a link to the CC BY license, and indicate if changes were made, but you may not do | |
| so in a way that suggests the rights holder has endorsed you or your use of the dataset. | |
| Note that further permission may be required for any content within the dataset | |
| that is identified as belonging to a third party. More details about the licences can be found | |
| [here](https://creativecommons.org/about/cclicenses/). | |
| """) | |
| # with st.expander('Click for More Info'): | |
| with row2_2: | |
| st.subheader('Model Development Details') | |
| # with st.expander('Click for More Info'): | |
| # st.write(['Framework Details:', 'Tensorflow is used for training and testing']) | |
| # st.caption('Framework Details:') | |
| # st.subheader('Subheader Framework Details:') | |
| # st.text('Fixed width text') | |
| # st.markdown('_Markdown_') # see * | |
| st.write( | |
| """ | |
| ## | |
| Training pipeline is implemented in Python. Tensorflow framework is used for training. | |
| """) | |
| new_title = '<h5 style="color:Black;">Training Hardware Info:</h5>' | |
| st.markdown(new_title, unsafe_allow_html=True) | |
| st.json(hardware_details) | |
| new_title = '<h5 style="color:Black;">Training Hyperparameters:</h5>' | |
| # list_test = """<ul> | |
| # <li><strong>Model Framework: </strong>First item</li> | |
| # <li> <strong style="color:Green;"><em>really important: </em></strong>Second item</li> | |
| # <li><strong>Model Framework: </strong>First item</li> | |
| # <li>Fourth item</li> | |
| # </ul>""" | |
| # st.markdown(list_test, unsafe_allow_html=True) | |
| st.markdown(new_title, unsafe_allow_html=True) | |
| # st.write("Tensorflow is used for training and testing") | |
| # st.metric(label="Temp", value="273 K", delta="1.2 K") | |
| # st.write("**Develooment Details**") | |
| st.json(dev_details) | |
| with row2_3: | |
| # st.write("**Production Details**") | |
| st.subheader('Production Details') | |
| list_test = """<ul> | |
| <li><strong>Model Size: </strong>26MB</li> | |
| <li> <strong>Model Input: </strong>(180x180x3)</li> | |
| <li> <strong>Model Output: </strong>(1x4)</li> | |
| <li> <strong>Model Framework: </strong> ONNXRuntime</li> | |
| </ul>""" | |
| st.markdown(list_test, unsafe_allow_html=True) |