Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,1396 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os,time,logging,requests,json,uuid,concurrent.futures,threading,base64,io
|
2 |
+
from io import BytesIO
|
3 |
+
from itertools import chain
|
4 |
+
from PIL import Image
|
5 |
+
from datetime import datetime
|
6 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
7 |
+
from flask import Flask, request, jsonify, Response, stream_with_context, render_template # Import render_template
|
8 |
+
from werkzeug.middleware.proxy_fix import ProxyFix
|
9 |
+
from requests.adapters import HTTPAdapter
|
10 |
+
from requests.packages.urllib3.util.retry import Retry
|
11 |
+
os.environ['TZ'] = 'Asia/Shanghai'
|
12 |
+
time.tzset()
|
13 |
+
logging.basicConfig(level=logging.INFO,
|
14 |
+
format='%(asctime)s - %(levelname)s - %(message)s')
|
15 |
+
API_ENDPOINT = "https://api-st.siliconflow.cn/v1/user/info"
|
16 |
+
TEST_MODEL_ENDPOINT = "https://api-st.siliconflow.cn/v1/chat/completions"
|
17 |
+
MODELS_ENDPOINT = "https://api-st.siliconflow.cn/v1/models"
|
18 |
+
EMBEDDINGS_ENDPOINT = "https://api-st.siliconflow.cn/v1/embeddings"
|
19 |
+
IMAGE_ENDPOINT = "https://api-st.siliconflow.cn/v1/images/generations"
|
20 |
+
def requests_session_with_retries(
|
21 |
+
retries=3, backoff_factor=0.3, status_forcelist=(500, 502, 504)
|
22 |
+
):
|
23 |
+
session = requests.Session()
|
24 |
+
retry = Retry(
|
25 |
+
total=retries,
|
26 |
+
read=retries,
|
27 |
+
connect=retries,
|
28 |
+
backoff_factor=backoff_factor,
|
29 |
+
status_forcelist=status_forcelist,
|
30 |
+
)
|
31 |
+
adapter = HTTPAdapter(
|
32 |
+
max_retries=retry,
|
33 |
+
pool_connections=1000,
|
34 |
+
pool_maxsize=10000,
|
35 |
+
pool_block=False
|
36 |
+
)
|
37 |
+
session.mount("http://", adapter)
|
38 |
+
session.mount("https://", adapter)
|
39 |
+
return session
|
40 |
+
session = requests_session_with_retries()
|
41 |
+
app = Flask(__name__)
|
42 |
+
app.wsgi_app = ProxyFix(app.wsgi_app, x_for=1)
|
43 |
+
models = {
|
44 |
+
"text": [],
|
45 |
+
"free_text": [],
|
46 |
+
"embedding": [],
|
47 |
+
"free_embedding": [],
|
48 |
+
"image": [],
|
49 |
+
"free_image": []
|
50 |
+
}
|
51 |
+
key_status = {
|
52 |
+
"invalid": [],
|
53 |
+
"free": [],
|
54 |
+
"unverified": [],
|
55 |
+
"valid": []
|
56 |
+
}
|
57 |
+
executor = concurrent.futures.ThreadPoolExecutor(max_workers=10000)
|
58 |
+
model_key_indices = {}
|
59 |
+
request_timestamps = []
|
60 |
+
token_counts = []
|
61 |
+
request_timestamps_day = []
|
62 |
+
token_counts_day = []
|
63 |
+
data_lock = threading.Lock()
|
64 |
+
def get_credit_summary(api_key):
|
65 |
+
headers = {
|
66 |
+
"Authorization": f"Bearer {api_key}",
|
67 |
+
"Content-Type": "application/json"
|
68 |
+
}
|
69 |
+
max_retries = 3
|
70 |
+
for attempt in range(max_retries):
|
71 |
+
try:
|
72 |
+
response = session.get(API_ENDPOINT, headers=headers, timeout=2)
|
73 |
+
response.raise_for_status()
|
74 |
+
data = response.json().get("data", {})
|
75 |
+
total_balance = data.get("totalBalance", 0)
|
76 |
+
logging.info(f"获取额度,API Key:{api_key},当前额度: {total_balance}")
|
77 |
+
return {"total_balance": float(total_balance)}
|
78 |
+
except requests.exceptions.Timeout as e:
|
79 |
+
logging.error(f"获取额度信息失败,API Key:{api_key},尝试次数:{attempt+1}/{max_retries},错误信息:{e} (Timeout)")
|
80 |
+
if attempt >= max_retries - 1:
|
81 |
+
logging.error(f"获取额度信息失败,API Key:{api_key},所有重试次数均已失败 (Timeout)")
|
82 |
+
except requests.exceptions.RequestException as e:
|
83 |
+
logging.error(f"获取额度信息失败,API Key:{api_key},错误信息:{e}")
|
84 |
+
return None
|
85 |
+
FREE_MODEL_TEST_KEY = (
|
86 |
+
"sk-bmjbjzleaqfgtqfzmcnsbagxrlohriadnxqrzfocbizaxukw"
|
87 |
+
)
|
88 |
+
FREE_IMAGE_LIST = [
|
89 |
+
"stabilityai/stable-diffusion-3-5-large",
|
90 |
+
"black-forest-labs/FLUX.1-schnell",
|
91 |
+
"stabilityai/stable-diffusion-3-medium",
|
92 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
93 |
+
"stabilityai/stable-diffusion-2-1"
|
94 |
+
]
|
95 |
+
def test_model_availability(api_key, model_name, model_type="chat"):
|
96 |
+
headers = {
|
97 |
+
"Authorization": f"Bearer {api_key}",
|
98 |
+
"Content-Type": "application/json"
|
99 |
+
}
|
100 |
+
if model_type == "image":
|
101 |
+
return model_name in FREE_IMAGE_LIST
|
102 |
+
try:
|
103 |
+
endpoint = EMBEDDINGS_ENDPOINT if model_type == "embedding" else TEST_MODEL_ENDPOINT
|
104 |
+
payload = (
|
105 |
+
{"model": model_name, "input": ["hi"]}
|
106 |
+
if model_type == "embedding"
|
107 |
+
else {"model": model_name, "messages": [{"role": "user", "content": "hi"}], "max_tokens": 5, "stream": False}
|
108 |
+
)
|
109 |
+
timeout = 10 if model_type == "embedding" else 5
|
110 |
+
response = session.post(
|
111 |
+
endpoint,
|
112 |
+
headers=headers,
|
113 |
+
json=payload,
|
114 |
+
timeout=timeout
|
115 |
+
)
|
116 |
+
return response.status_code in [200, 429]
|
117 |
+
except requests.exceptions.RequestException as e:
|
118 |
+
logging.error(
|
119 |
+
f"测试{model_type}模型 {model_name} 可用性失败,"
|
120 |
+
f"API Key:{api_key},错误信息:{e}"
|
121 |
+
)
|
122 |
+
return False
|
123 |
+
def process_image_url(image_url, response_format=None):
|
124 |
+
if not image_url:
|
125 |
+
return {"url": ""}
|
126 |
+
if response_format == "b64_json":
|
127 |
+
try:
|
128 |
+
response = session.get(image_url, stream=True)
|
129 |
+
response.raise_for_status()
|
130 |
+
image = Image.open(response.raw)
|
131 |
+
buffered = io.BytesIO()
|
132 |
+
image.save(buffered, format="PNG")
|
133 |
+
img_str = base64.b64encode(buffered.getvalue()).decode()
|
134 |
+
return {"b64_json": img_str}
|
135 |
+
except Exception as e:
|
136 |
+
logging.error(f"图片转base64失败: {e}")
|
137 |
+
return {"url": image_url}
|
138 |
+
return {"url": image_url}
|
139 |
+
def create_base64_markdown_image(image_url):
|
140 |
+
try:
|
141 |
+
response = session.get(image_url, stream=True)
|
142 |
+
response.raise_for_status()
|
143 |
+
image = Image.open(BytesIO(response.content))
|
144 |
+
new_size = tuple(dim // 4 for dim in image.size)
|
145 |
+
resized_image = image.resize(new_size, Image.LANCZOS)
|
146 |
+
buffered = BytesIO()
|
147 |
+
resized_image.save(buffered, format="PNG")
|
148 |
+
base64_encoded = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
149 |
+
markdown_image_link = f""
|
150 |
+
logging.info("Created base64 markdown image link.")
|
151 |
+
return markdown_image_link
|
152 |
+
except Exception as e:
|
153 |
+
logging.error(f"Error creating markdown image: {e}")
|
154 |
+
return None
|
155 |
+
def extract_user_content(messages):
|
156 |
+
user_content = ""
|
157 |
+
for message in messages:
|
158 |
+
if message["role"] == "user":
|
159 |
+
if isinstance(message["content"], str):
|
160 |
+
user_content += message["content"] + " "
|
161 |
+
elif isinstance(message["content"], list):
|
162 |
+
for item in message["content"]:
|
163 |
+
if isinstance(item, dict) and item.get("type") == "text":
|
164 |
+
user_content += item.get("text", "") + " "
|
165 |
+
return user_content.strip()
|
166 |
+
def get_siliconflow_data(model_name, data):
|
167 |
+
siliconflow_data = {
|
168 |
+
"model": model_name,
|
169 |
+
"prompt": data.get("prompt") or "",
|
170 |
+
}
|
171 |
+
if model_name == "black-forest-labs/FLUX.1-pro":
|
172 |
+
siliconflow_data.update({
|
173 |
+
"width": max(256, min(1440, (data.get("width", 1024) // 32) * 32)),
|
174 |
+
"height": max(256, min(1440, (data.get("height", 768) // 32) * 32)),
|
175 |
+
"prompt_upsampling": data.get("prompt_upsampling", False),
|
176 |
+
"image_prompt": data.get("image_prompt"),
|
177 |
+
"steps": max(1, min(50, data.get("steps", 20))),
|
178 |
+
"guidance": max(1.5, min(5, data.get("guidance", 3))),
|
179 |
+
"safety_tolerance": max(0, min(6, data.get("safety_tolerance", 2))),
|
180 |
+
"interval": max(1, min(4, data.get("interval", 2))),
|
181 |
+
"output_format": data.get("output_format", "png")
|
182 |
+
})
|
183 |
+
seed = data.get("seed")
|
184 |
+
if isinstance(seed, int) and 0 < seed < 9999999999:
|
185 |
+
siliconflow_data["seed"] = seed
|
186 |
+
else:
|
187 |
+
siliconflow_data.update({
|
188 |
+
"image_size": data.get("image_size", "1024x1024"),
|
189 |
+
"prompt_enhancement": data.get("prompt_enhancement", False)
|
190 |
+
})
|
191 |
+
seed = data.get("seed")
|
192 |
+
if isinstance(seed, int) and 0 < seed < 9999999999:
|
193 |
+
siliconflow_data["seed"] = seed
|
194 |
+
if model_name not in ["black-forest-labs/FLUX.1-schnell", "Pro/black-forest-labs/FLUX.1-schnell"]:
|
195 |
+
siliconflow_data.update({
|
196 |
+
"batch_size": max(1, min(4, data.get("n", 1))),
|
197 |
+
"num_inference_steps": max(1, min(50, data.get("steps", 20))),
|
198 |
+
"guidance_scale": max(0, min(100, data.get("guidance_scale", 7.5))),
|
199 |
+
"negative_prompt": data.get("negative_prompt")
|
200 |
+
})
|
201 |
+
valid_sizes = ["1024x1024", "512x1024", "768x512", "768x1024", "1024x576", "576x1024", "960x1280", "720x1440", "720x1280"]
|
202 |
+
if "image_size" in siliconflow_data and siliconflow_data["image_size"] not in valid_sizes:
|
203 |
+
siliconflow_data["image_size"] = "1024x1024"
|
204 |
+
return siliconflow_data
|
205 |
+
def refresh_models():
|
206 |
+
global models
|
207 |
+
models["text"] = get_all_models(FREE_MODEL_TEST_KEY, "chat")
|
208 |
+
models["embedding"] = get_all_models(FREE_MODEL_TEST_KEY, "embedding")
|
209 |
+
models["image"] = get_all_models(FREE_MODEL_TEST_KEY, "text-to-image")
|
210 |
+
models["free_text"] = []
|
211 |
+
models["free_embedding"] = []
|
212 |
+
models["free_image"] = []
|
213 |
+
ban_models = []
|
214 |
+
ban_models_str = os.environ.get("BAN_MODELS")
|
215 |
+
if ban_models_str:
|
216 |
+
try:
|
217 |
+
ban_models = json.loads(ban_models_str)
|
218 |
+
if not isinstance(ban_models, list):
|
219 |
+
logging.warning("环境变量 BAN_MODELS 格式不正确,应为 JSON 数组。")
|
220 |
+
ban_models = []
|
221 |
+
except json.JSONDecodeError:
|
222 |
+
logging.warning("环境变量 BAN_MODELS JSON 解析失败,请检查格式。")
|
223 |
+
models["text"] = [model for model in models["text"] if model not in ban_models]
|
224 |
+
models["embedding"] = [model for model in models["embedding"] if model not in ban_models]
|
225 |
+
models["image"] = [model for model in models["image"] if model not in ban_models]
|
226 |
+
model_types = [
|
227 |
+
("text", "chat"),
|
228 |
+
("embedding", "embedding"),
|
229 |
+
("image", "image")
|
230 |
+
]
|
231 |
+
for model_type, test_type in model_types:
|
232 |
+
with concurrent.futures.ThreadPoolExecutor(max_workers=10000) as executor:
|
233 |
+
future_to_model = {
|
234 |
+
executor.submit(
|
235 |
+
test_model_availability,
|
236 |
+
FREE_MODEL_TEST_KEY,
|
237 |
+
model,
|
238 |
+
test_type
|
239 |
+
): model for model in models[model_type]
|
240 |
+
}
|
241 |
+
for future in concurrent.futures.as_completed(future_to_model):
|
242 |
+
model = future_to_model[future]
|
243 |
+
try:
|
244 |
+
is_free = future.result()
|
245 |
+
if is_free:
|
246 |
+
models[f"free_{model_type}"].append(model)
|
247 |
+
except Exception as exc:
|
248 |
+
logging.error(f"{model_type}模型 {model} 测试生成异常: {exc}")
|
249 |
+
for model_type in ["text", "embedding", "image"]:
|
250 |
+
logging.info(f"所有{model_type}模型列表:{models[model_type]}")
|
251 |
+
logging.info(f"免费{model_type}模型列表:{models[f'free_{model_type}']}")
|
252 |
+
def load_keys():
|
253 |
+
global key_status
|
254 |
+
for status in key_status:
|
255 |
+
key_status[status] = []
|
256 |
+
keys_str = os.environ.get("KEYS")
|
257 |
+
if not keys_str:
|
258 |
+
logging.warning("环境变量 KEYS 未设置。")
|
259 |
+
return
|
260 |
+
test_model = os.environ.get("TEST_MODEL", "Pro/google/gemma-2-9b-it")
|
261 |
+
unique_keys = list(set(key.strip() for key in keys_str.split(',')))
|
262 |
+
os.environ["KEYS"] = ','.join(unique_keys)
|
263 |
+
logging.info(f"加载的 keys:{unique_keys}")
|
264 |
+
def process_key_with_logging(key):
|
265 |
+
try:
|
266 |
+
key_type = process_key(key, test_model)
|
267 |
+
if key_type in key_status:
|
268 |
+
key_status[key_type].append(key)
|
269 |
+
return key_type
|
270 |
+
except Exception as exc:
|
271 |
+
logging.error(f"处理 KEY {key} 生成异常: {exc}")
|
272 |
+
return "invalid"
|
273 |
+
with concurrent.futures.ThreadPoolExecutor(max_workers=10000) as executor:
|
274 |
+
futures = [executor.submit(process_key_with_logging, key) for key in unique_keys]
|
275 |
+
concurrent.futures.wait(futures)
|
276 |
+
for status, keys in key_status.items():
|
277 |
+
logging.info(f"{status.capitalize()} KEYS: {keys}")
|
278 |
+
global invalid_keys_global, free_keys_global, unverified_keys_global, valid_keys_global
|
279 |
+
invalid_keys_global = key_status["invalid"]
|
280 |
+
free_keys_global = key_status["free"]
|
281 |
+
unverified_keys_global = key_status["unverified"]
|
282 |
+
valid_keys_global = key_status["valid"]
|
283 |
+
def process_key(key, test_model):
|
284 |
+
credit_summary = get_credit_summary(key)
|
285 |
+
if credit_summary is None:
|
286 |
+
return "invalid"
|
287 |
+
else:
|
288 |
+
total_balance = credit_summary.get("total_balance", 0)
|
289 |
+
if total_balance <= 0.03:
|
290 |
+
return "free"
|
291 |
+
else:
|
292 |
+
if test_model_availability(key, test_model):
|
293 |
+
return "valid"
|
294 |
+
else:
|
295 |
+
return "unverified"
|
296 |
+
def get_all_models(api_key, sub_type):
|
297 |
+
headers = {
|
298 |
+
"Authorization": f"Bearer {api_key}",
|
299 |
+
"Content-Type": "application/json"
|
300 |
+
}
|
301 |
+
try:
|
302 |
+
response = session.get(
|
303 |
+
MODELS_ENDPOINT,
|
304 |
+
headers=headers,
|
305 |
+
params={"sub_type": sub_type}
|
306 |
+
)
|
307 |
+
response.raise_for_status()
|
308 |
+
data = response.json()
|
309 |
+
if (
|
310 |
+
isinstance(data, dict) and
|
311 |
+
'data' in data and
|
312 |
+
isinstance(data['data'], list)
|
313 |
+
):
|
314 |
+
return [
|
315 |
+
model.get("id") for model in data["data"]
|
316 |
+
if isinstance(model, dict) and "id" in model
|
317 |
+
]
|
318 |
+
else:
|
319 |
+
logging.error("获取模型列表失败:响应数据格式不正确")
|
320 |
+
return []
|
321 |
+
except requests.exceptions.RequestException as e:
|
322 |
+
logging.error(
|
323 |
+
f"获取模型列表失败,"
|
324 |
+
f"API Key:{api_key},错误信息:{e}"
|
325 |
+
)
|
326 |
+
return []
|
327 |
+
except (KeyError, TypeError) as e:
|
328 |
+
logging.error(
|
329 |
+
f"解析模型列表失败,"
|
330 |
+
f"API Key:{api_key},错误信息:{e}"
|
331 |
+
)
|
332 |
+
return []
|
333 |
+
def determine_request_type(model_name, model_list, free_model_list):
|
334 |
+
if model_name in free_model_list:
|
335 |
+
return "free"
|
336 |
+
elif model_name in model_list:
|
337 |
+
return "paid"
|
338 |
+
else:
|
339 |
+
return "unknown"
|
340 |
+
def select_key(request_type, model_name):
|
341 |
+
if request_type == "free":
|
342 |
+
available_keys = (
|
343 |
+
free_keys_global +
|
344 |
+
unverified_keys_global +
|
345 |
+
valid_keys_global
|
346 |
+
)
|
347 |
+
elif request_type == "paid":
|
348 |
+
available_keys = unverified_keys_global + valid_keys_global
|
349 |
+
else:
|
350 |
+
available_keys = (
|
351 |
+
free_keys_global +
|
352 |
+
unverified_keys_global +
|
353 |
+
valid_keys_global
|
354 |
+
)
|
355 |
+
if not available_keys:
|
356 |
+
return None
|
357 |
+
current_index = model_key_indices.get(model_name, 0)
|
358 |
+
for _ in range(len(available_keys)): # Corrected line: _in changed to _
|
359 |
+
key = available_keys[current_index % len(available_keys)]
|
360 |
+
current_index += 1
|
361 |
+
if key_is_valid(key, request_type):
|
362 |
+
model_key_indices[model_name] = current_index
|
363 |
+
return key
|
364 |
+
else:
|
365 |
+
logging.warning(
|
366 |
+
f"KEY {key} 无效或达到限制,尝试下一个 KEY"
|
367 |
+
)
|
368 |
+
model_key_indices[model_name] = 0
|
369 |
+
return None
|
370 |
+
def key_is_valid(key, request_type):
|
371 |
+
if request_type == "invalid":
|
372 |
+
return False
|
373 |
+
credit_summary = get_credit_summary(key)
|
374 |
+
if credit_summary is None:
|
375 |
+
return False
|
376 |
+
total_balance = credit_summary.get("total_balance", 0)
|
377 |
+
if request_type == "free":
|
378 |
+
return True
|
379 |
+
elif request_type == "paid" or request_type == "unverified": #Fixed typo here
|
380 |
+
return total_balance > 0
|
381 |
+
else:
|
382 |
+
return False
|
383 |
+
def check_authorization(request):
|
384 |
+
authorization_key = os.environ.get("AUTHORIZATION_KEY")
|
385 |
+
if not authorization_key:
|
386 |
+
logging.warning("环境变量 AUTHORIZATION_KEY 未设置,此时无需鉴权即可使用,建议进行设置后再使用。")
|
387 |
+
return True
|
388 |
+
auth_header = request.headers.get('Authorization')
|
389 |
+
if not auth_header:
|
390 |
+
logging.warning("请求头中缺少 Authorization 字段。")
|
391 |
+
return False
|
392 |
+
if auth_header != f"Bearer {authorization_key}":
|
393 |
+
logging.warning(f"无效的 Authorization 密钥:{auth_header}")
|
394 |
+
return False
|
395 |
+
return True
|
396 |
+
|
397 |
+
def obfuscate_key(key):
|
398 |
+
if not key:
|
399 |
+
return "****"
|
400 |
+
prefix_length = 6
|
401 |
+
suffix_length = 4
|
402 |
+
if len(key) <= prefix_length + suffix_length:
|
403 |
+
return "****" # If key is too short, just mask it all
|
404 |
+
prefix = key[:prefix_length]
|
405 |
+
suffix = key[-suffix_length:]
|
406 |
+
masked_part = "*" * (len(key) - prefix_length - suffix_length)
|
407 |
+
return prefix + masked_part + suffix
|
408 |
+
|
409 |
+
scheduler = BackgroundScheduler()
|
410 |
+
scheduler.add_job(load_keys, 'interval', hours=1)
|
411 |
+
scheduler.remove_all_jobs()
|
412 |
+
scheduler.add_job(refresh_models, 'interval', hours=1)
|
413 |
+
|
414 |
+
@app.route('/')
|
415 |
+
def index():
|
416 |
+
current_time = time.time()
|
417 |
+
one_minute_ago = current_time - 60
|
418 |
+
one_day_ago = current_time - 86400
|
419 |
+
with data_lock:
|
420 |
+
while request_timestamps and request_timestamps[0] < one_minute_ago:
|
421 |
+
request_timestamps.pop(0)
|
422 |
+
token_counts.pop(0)
|
423 |
+
rpm = len(request_timestamps)
|
424 |
+
tpm = sum(token_counts)
|
425 |
+
with data_lock:
|
426 |
+
while request_timestamps_day and request_timestamps_day[0] < one_day_ago:
|
427 |
+
request_timestamps_day.pop(0)
|
428 |
+
token_counts_day.pop(0)
|
429 |
+
rpd = len(request_timestamps_day)
|
430 |
+
tpd = sum(token_counts_day)
|
431 |
+
|
432 |
+
key_balances = []
|
433 |
+
all_keys = list(chain(*key_status.values())) # Get all keys from all statuses
|
434 |
+
with concurrent.futures.ThreadPoolExecutor(max_workers=10000) as executor:
|
435 |
+
future_to_key = {executor.submit(get_credit_summary, key): key for key in all_keys}
|
436 |
+
for future in concurrent.futures.as_completed(future_to_key):
|
437 |
+
key = future_to_key[future]
|
438 |
+
try:
|
439 |
+
credit_summary = future.result()
|
440 |
+
balance = credit_summary.get("total_balance") if credit_summary else "获取失败"
|
441 |
+
key_balances.append({"key": obfuscate_key(key), "balance": balance})
|
442 |
+
except Exception as exc:
|
443 |
+
logging.error(f"获取 KEY {obfuscate_key(key)} 余额信息失败: {exc}")
|
444 |
+
key_balances.append({"key": obfuscate_key(key), "balance": "获取失败"})
|
445 |
+
|
446 |
+
|
447 |
+
return render_template('index.html', rpm=rpm, tpm=tpm, rpd=rpd, tpd=tpd, key_balances=key_balances) # Render template instead of jsonify
|
448 |
+
|
449 |
+
@app.route('/handsome/v1/models', methods=['GET'])
|
450 |
+
def list_models():
|
451 |
+
if not check_authorization(request):
|
452 |
+
return jsonify({"error": "Unauthorized"}), 401
|
453 |
+
detailed_models = []
|
454 |
+
all_models = chain(
|
455 |
+
models["text"],
|
456 |
+
models["embedding"],
|
457 |
+
models["image"]
|
458 |
+
)
|
459 |
+
for model in all_models:
|
460 |
+
model_data = {
|
461 |
+
"id": model,
|
462 |
+
"object": "model",
|
463 |
+
"created": 1678888888,
|
464 |
+
"owned_by": "openai",
|
465 |
+
"permission": [],
|
466 |
+
"root": model,
|
467 |
+
"parent": None
|
468 |
+
}
|
469 |
+
detailed_models.append(model_data)
|
470 |
+
if "DeepSeek-R1" in model:
|
471 |
+
detailed_models.append({
|
472 |
+
"id": model + "-thinking",
|
473 |
+
"object": "model",
|
474 |
+
"created": 1678888888,
|
475 |
+
"owned_by": "openai",
|
476 |
+
"permission": [],
|
477 |
+
"root": model + "-thinking",
|
478 |
+
"parent": None
|
479 |
+
})
|
480 |
+
detailed_models.append({
|
481 |
+
"id": model + "-openwebui",
|
482 |
+
"object": "model",
|
483 |
+
"created": 1678888888,
|
484 |
+
"owned_by": "openai",
|
485 |
+
"permission": [],
|
486 |
+
"root": model + "-openwebui",
|
487 |
+
"parent": None
|
488 |
+
})
|
489 |
+
return jsonify({
|
490 |
+
"success": True,
|
491 |
+
"data": detailed_models
|
492 |
+
})
|
493 |
+
@app.route('/handsome/v1/dashboard/billing/usage', methods=['GET'])
|
494 |
+
def billing_usage():
|
495 |
+
if not check_authorization(request):
|
496 |
+
return jsonify({"error": "Unauthorized"}), 401
|
497 |
+
daily_usage = []
|
498 |
+
return jsonify({
|
499 |
+
"object": "list",
|
500 |
+
"data": daily_usage,
|
501 |
+
"total_usage": 0
|
502 |
+
})
|
503 |
+
@app.route('/handsome/v1/dashboard/billing/subscription', methods=['GET'])
|
504 |
+
def billing_subscription():
|
505 |
+
if not check_authorization(request):
|
506 |
+
return jsonify({"error": "Unauthorized"}), 401
|
507 |
+
keys = valid_keys_global + unverified_keys_global
|
508 |
+
total_balance = 0
|
509 |
+
with concurrent.futures.ThreadPoolExecutor(
|
510 |
+
max_workers=10000
|
511 |
+
) as executor:
|
512 |
+
futures = [
|
513 |
+
executor.submit(get_credit_summary, key) for key in keys
|
514 |
+
]
|
515 |
+
for future in concurrent.futures.as_completed(futures):
|
516 |
+
try:
|
517 |
+
credit_summary = future.result()
|
518 |
+
if credit_summary:
|
519 |
+
total_balance += credit_summary.get("total_balance", 0)
|
520 |
+
except Exception as exc:
|
521 |
+
logging.error(f"获取额度信息生成异常: {exc}")
|
522 |
+
return jsonify({
|
523 |
+
"object": "billing_subscription",
|
524 |
+
"access_until": int(datetime(9999, 12, 31).timestamp()),
|
525 |
+
"soft_limit": 0,
|
526 |
+
"hard_limit": total_balance,
|
527 |
+
"system_hard_limit": total_balance,
|
528 |
+
"soft_limit_usd": 0,
|
529 |
+
"hard_limit_usd": total_balance,
|
530 |
+
"system_hard_limit_usd": total_balance
|
531 |
+
})
|
532 |
+
@app.route('/handsome/v1/embeddings', methods=['POST'])
|
533 |
+
def handsome_embeddings():
|
534 |
+
if not check_authorization(request):
|
535 |
+
return jsonify({"error": "Unauthorized"}), 401
|
536 |
+
data = request.get_json()
|
537 |
+
if not data or 'model' not in data:
|
538 |
+
return jsonify({"error": "Invalid request data"}), 400
|
539 |
+
if data['model'] not in models["embedding"]:
|
540 |
+
return jsonify({"error": "Invalid model"}), 400
|
541 |
+
model_name = data['model']
|
542 |
+
request_type = determine_request_type(
|
543 |
+
model_name,
|
544 |
+
models["embedding"],
|
545 |
+
models["free_embedding"]
|
546 |
+
)
|
547 |
+
api_key = select_key(request_type, model_name)
|
548 |
+
if not api_key:
|
549 |
+
return jsonify({"error": ("No available API key for this request type or all keys have reached their limits")}), 429
|
550 |
+
headers = {
|
551 |
+
"Authorization": f"Bearer {api_key}",
|
552 |
+
"Content-Type": "application/json"
|
553 |
+
}
|
554 |
+
try:
|
555 |
+
start_time = time.time()
|
556 |
+
response = requests.post(
|
557 |
+
EMBEDDINGS_ENDPOINT,
|
558 |
+
headers=headers,
|
559 |
+
json=data,
|
560 |
+
timeout=120
|
561 |
+
)
|
562 |
+
if response.status_code == 429:
|
563 |
+
return jsonify(response.json()), 429
|
564 |
+
response.raise_for_status()
|
565 |
+
end_time = time.time()
|
566 |
+
response_json = response.json()
|
567 |
+
total_time = end_time - start_time
|
568 |
+
try:
|
569 |
+
prompt_tokens = response_json["usage"]["prompt_tokens"]
|
570 |
+
embedding_data = response_json["data"]
|
571 |
+
except (KeyError, ValueError, IndexError) as e:
|
572 |
+
logging.error(
|
573 |
+
f"解析响应 JSON 失败: {e}, "
|
574 |
+
f"完整内容: {response_json}"
|
575 |
+
)
|
576 |
+
prompt_tokens = 0
|
577 |
+
embedding_data = []
|
578 |
+
logging.info(
|
579 |
+
f"使用的key: {api_key}, "
|
580 |
+
f"提示token: {prompt_tokens}, "
|
581 |
+
f"总共用时: {total_time:.4f}秒, "
|
582 |
+
f"使用的模型: {model_name}"
|
583 |
+
)
|
584 |
+
with data_lock:
|
585 |
+
request_timestamps.append(time.time())
|
586 |
+
token_counts.append(prompt_tokens)
|
587 |
+
request_timestamps_day.append(time.time())
|
588 |
+
token_counts_day.append(prompt_tokens)
|
589 |
+
return jsonify({
|
590 |
+
"object": "list",
|
591 |
+
"data": embedding_data,
|
592 |
+
"model": model_name,
|
593 |
+
"usage": {
|
594 |
+
"prompt_tokens": prompt_tokens,
|
595 |
+
"total_tokens": prompt_tokens
|
596 |
+
}
|
597 |
+
})
|
598 |
+
except requests.exceptions.RequestException as e:
|
599 |
+
return jsonify({"error": str(e)}), 500
|
600 |
+
@app.route('/handsome/v1/images/generations', methods=['POST'])
|
601 |
+
def handsome_images_generations():
|
602 |
+
if not check_authorization(request):
|
603 |
+
return jsonify({"error": "Unauthorized"}), 401
|
604 |
+
data = request.get_json()
|
605 |
+
if not data or 'model' not in data:
|
606 |
+
return jsonify({"error": "Invalid request data"}), 400
|
607 |
+
if data['model'] not in models["image"]:
|
608 |
+
return jsonify({"error": "Invalid model"}), 400
|
609 |
+
model_name = data.get('model')
|
610 |
+
request_type = determine_request_type(
|
611 |
+
model_name,
|
612 |
+
models["image"],
|
613 |
+
models["free_image"]
|
614 |
+
)
|
615 |
+
api_key = select_key(request_type, model_name)
|
616 |
+
if not api_key:
|
617 |
+
return jsonify({"error": ("No available API key for this request type or all keys have reached their limits")}), 429
|
618 |
+
headers = {
|
619 |
+
"Authorization": f"Bearer {api_key}",
|
620 |
+
"Content-Type": "application/json"
|
621 |
+
}
|
622 |
+
response_data = {}
|
623 |
+
if "stable-diffusion" in model_name or model_name in ["black-forest-labs/FLUX.1-schnell", "Pro/black-forest-labs/FLUX.1-schnell","black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-pro"]:
|
624 |
+
siliconflow_data = get_siliconflow_data(model_name, data)
|
625 |
+
try:
|
626 |
+
start_time = time.time()
|
627 |
+
response = requests.post(
|
628 |
+
IMAGE_ENDPOINT,
|
629 |
+
headers=headers,
|
630 |
+
json=siliconflow_data,
|
631 |
+
timeout=120
|
632 |
+
)
|
633 |
+
if response.status_code == 429:
|
634 |
+
return jsonify(response.json()), 429
|
635 |
+
response.raise_for_status()
|
636 |
+
end_time = time.time()
|
637 |
+
response_json = response.json()
|
638 |
+
total_time = end_time - start_time
|
639 |
+
try:
|
640 |
+
images = response_json.get("images", [])
|
641 |
+
openai_images = []
|
642 |
+
for item in images:
|
643 |
+
if isinstance(item, dict) and "url" in item:
|
644 |
+
image_url = item["url"]
|
645 |
+
print(f"image_url: {image_url}")
|
646 |
+
if data.get("response_format") == "b64_json":
|
647 |
+
try:
|
648 |
+
image_data = session.get(image_url, stream=True).raw
|
649 |
+
image = Image.open(image_data)
|
650 |
+
buffered = io.BytesIO()
|
651 |
+
image.save(buffered, format="PNG")
|
652 |
+
img_str = base64.b64encode(buffered.getvalue()).decode()
|
653 |
+
openai_images.append({"b64_json": img_str})
|
654 |
+
except Exception as e:
|
655 |
+
logging.error(f"图片转base64失败: {e}")
|
656 |
+
openai_images.append({"url": image_url})
|
657 |
+
else:
|
658 |
+
openai_images.append({"url": image_url})
|
659 |
+
else:
|
660 |
+
logging.error(f"无效的图片数据: {item}")
|
661 |
+
openai_images.append({"url": item})
|
662 |
+
response_data = {
|
663 |
+
"created": int(time.time()),
|
664 |
+
"data": openai_images
|
665 |
+
}
|
666 |
+
except (KeyError, ValueError, IndexError) as e:
|
667 |
+
logging.error(
|
668 |
+
f"解析响应 JSON 失败: {e}, "
|
669 |
+
f"完整内容: {response_json}"
|
670 |
+
)
|
671 |
+
response_data = {
|
672 |
+
"created": int(time.time()),
|
673 |
+
"data": []
|
674 |
+
}
|
675 |
+
logging.info(
|
676 |
+
f"使用的key: {api_key}, "
|
677 |
+
f"总共用时: {total_time:.4f}秒, "
|
678 |
+
f"使用的模型: {model_name}"
|
679 |
+
)
|
680 |
+
with data_lock:
|
681 |
+
request_timestamps.append(time.time())
|
682 |
+
token_counts.append(0)
|
683 |
+
request_timestamps_day.append(time.time())
|
684 |
+
token_counts_day.append(0)
|
685 |
+
return jsonify(response_data)
|
686 |
+
except requests.exceptions.RequestException as e:
|
687 |
+
logging.error(f"请求转发异常: {e}")
|
688 |
+
return jsonify({"error": str(e)}), 500
|
689 |
+
else:
|
690 |
+
return jsonify({"error": "Unsupported model"}), 400
|
691 |
+
@app.route('/handsome/v1/chat/completions', methods=['POST'])
|
692 |
+
def handsome_chat_completions():
|
693 |
+
if not check_authorization(request):
|
694 |
+
return jsonify({"error": "Unauthorized"}), 401
|
695 |
+
data = request.get_json()
|
696 |
+
if not data or 'model' not in data:
|
697 |
+
return jsonify({"error": "Invalid request data"}), 400
|
698 |
+
model_name = data['model']
|
699 |
+
if model_name not in models["text"] and model_name not in models["image"]:
|
700 |
+
if "DeepSeek-R1" in model_name and (model_name.endswith("-openwebui") or model_name.endswith("-thinking")):
|
701 |
+
pass
|
702 |
+
else:
|
703 |
+
return jsonify({"error": "Invalid model"}), 400
|
704 |
+
model_realname = model_name.replace("-thinking", "").replace("-openwebui", "")
|
705 |
+
request_type = determine_request_type(
|
706 |
+
model_realname,
|
707 |
+
models["text"] + models["image"],
|
708 |
+
models["free_text"] + models["free_image"]
|
709 |
+
)
|
710 |
+
api_key = select_key(request_type, model_name)
|
711 |
+
if not api_key:
|
712 |
+
return jsonify(
|
713 |
+
{
|
714 |
+
"error": (
|
715 |
+
"No available API key for this "
|
716 |
+
"request type or all keys have "
|
717 |
+
"reached their limits"
|
718 |
+
)
|
719 |
+
}
|
720 |
+
), 429
|
721 |
+
headers = {
|
722 |
+
"Authorization": f"Bearer {api_key}",
|
723 |
+
"Content-Type": "application/json"
|
724 |
+
}
|
725 |
+
if "DeepSeek-R1" in model_name and ("thinking" in model_name or "openwebui" in model_name):
|
726 |
+
data['model'] = model_realname
|
727 |
+
start_time = time.time()
|
728 |
+
response = requests.post(
|
729 |
+
TEST_MODEL_ENDPOINT,
|
730 |
+
headers=headers,
|
731 |
+
json=data,
|
732 |
+
stream=data.get("stream", False),
|
733 |
+
timeout=120
|
734 |
+
)
|
735 |
+
if response.status_code == 429:
|
736 |
+
return jsonify(response.json()), 429
|
737 |
+
if data.get("stream", False):
|
738 |
+
def generate():
|
739 |
+
if model_name.endswith("-openwebui"):
|
740 |
+
first_chunk_time = None
|
741 |
+
full_response_content = ""
|
742 |
+
reasoning_content_accumulated = ""
|
743 |
+
content_accumulated = ""
|
744 |
+
first_reasoning_chunk = True
|
745 |
+
for chunk in response.iter_lines():
|
746 |
+
if chunk:
|
747 |
+
if first_chunk_time is None:
|
748 |
+
first_chunk_time = time.time()
|
749 |
+
full_response_content += chunk.decode("utf-8")
|
750 |
+
for line in chunk.decode("utf-8").splitlines():
|
751 |
+
if line.startswith("data:"):
|
752 |
+
try:
|
753 |
+
chunk_json = json.loads(line.lstrip("data: ").strip())
|
754 |
+
if "choices" in chunk_json and len(chunk_json["choices"]) > 0:
|
755 |
+
delta = chunk_json["choices"][0].get("delta", {})
|
756 |
+
if delta.get("reasoning_content") is not None:
|
757 |
+
reasoning_chunk = delta["reasoning_content"]
|
758 |
+
if first_reasoning_chunk:
|
759 |
+
think_chunk = f"<"
|
760 |
+
yield f"data: {json.dumps({'choices': [{'delta': {'content': think_chunk}, 'index': 0}]})}\n\n"
|
761 |
+
think_chunk = f"think"
|
762 |
+
yield f"data: {json.dumps({'choices': [{'delta': {'content': think_chunk}, 'index': 0}]})}\n\n"
|
763 |
+
think_chunk = f">\n"
|
764 |
+
yield f"data: {json.dumps({'choices': [{'delta': {'content': think_chunk}, 'index': 0}]})}\n\n"
|
765 |
+
first_reasoning_chunk = False
|
766 |
+
yield f"data: {json.dumps({'choices': [{'delta': {'content': reasoning_chunk}, 'index': 0}]})}\n\n"
|
767 |
+
if delta.get("content") is not None:
|
768 |
+
if not first_reasoning_chunk:
|
769 |
+
reasoning_chunk = f"\n</think>\n"
|
770 |
+
yield f"data: {json.dumps({'choices': [{'delta': {'content': reasoning_chunk}, 'index': 0}]})}\n\n"
|
771 |
+
first_reasoning_chunk = True
|
772 |
+
yield f"data: {json.dumps({'choices': [{'delta': {'content': delta["content"]}, 'index': 0}]})}\n\n"
|
773 |
+
except (KeyError, ValueError, json.JSONDecodeError) as e:
|
774 |
+
continue
|
775 |
+
end_time = time.time()
|
776 |
+
first_token_time = (
|
777 |
+
first_chunk_time - start_time
|
778 |
+
if first_chunk_time else 0
|
779 |
+
)
|
780 |
+
total_time = end_time - start_time
|
781 |
+
prompt_tokens = 0
|
782 |
+
completion_tokens = 0
|
783 |
+
for line in full_response_content.splitlines():
|
784 |
+
if line.startswith("data:"):
|
785 |
+
line = line[5:].strip()
|
786 |
+
if line == "[DONE]":
|
787 |
+
continue
|
788 |
+
try:
|
789 |
+
response_json = json.loads(line)
|
790 |
+
if (
|
791 |
+
"usage" in response_json and
|
792 |
+
"completion_tokens" in response_json["usage"]
|
793 |
+
):
|
794 |
+
completion_tokens += response_json[
|
795 |
+
"usage"
|
796 |
+
]["completion_tokens"]
|
797 |
+
if (
|
798 |
+
"usage" in response_json and
|
799 |
+
"prompt_tokens" in response_json["usage"]
|
800 |
+
):
|
801 |
+
prompt_tokens = response_json[
|
802 |
+
"usage"
|
803 |
+
]["prompt_tokens"]
|
804 |
+
except ( KeyError,ValueError,IndexError) as e:
|
805 |
+
pass
|
806 |
+
user_content = ""
|
807 |
+
messages = data.get("messages", [])
|
808 |
+
for message in messages:
|
809 |
+
if message["role"] == "user":
|
810 |
+
if isinstance(message["content"], str):
|
811 |
+
user_content += message["content"] + " "
|
812 |
+
elif isinstance(message["content"], list):
|
813 |
+
for item in message["content"]:
|
814 |
+
if (
|
815 |
+
isinstance(item, dict) and
|
816 |
+
item.get("type") == "text"
|
817 |
+
):
|
818 |
+
user_content += (
|
819 |
+
item.get("text", "") +
|
820 |
+
" "
|
821 |
+
)
|
822 |
+
user_content = user_content.strip()
|
823 |
+
user_content_replaced = user_content.replace(
|
824 |
+
'\n', '\\n'
|
825 |
+
).replace('\r', '\\n')
|
826 |
+
response_content_replaced = (f"```Thinking\n{reasoning_content_accumulated}\n```\n" if reasoning_content_accumulated else "") + content_accumulated
|
827 |
+
response_content_replaced = response_content_replaced.replace(
|
828 |
+
'\n', '\\n'
|
829 |
+
).replace('\r', '\\n')
|
830 |
+
logging.info(
|
831 |
+
f"使用的key: {api_key}, "
|
832 |
+
f"提示token: {prompt_tokens}, "
|
833 |
+
f"输出token: {completion_tokens}, "
|
834 |
+
f"首字用时: {first_token_time:.4f}秒, "
|
835 |
+
f"总共用时: {total_time:.4f}秒, "
|
836 |
+
f"使用的模型: {model_name}, "
|
837 |
+
f"用户的内容: {user_content_replaced}, "
|
838 |
+
f"输出的内容: {response_content_replaced}"
|
839 |
+
)
|
840 |
+
with data_lock:
|
841 |
+
request_timestamps.append(time.time())
|
842 |
+
token_counts.append(prompt_tokens + completion_tokens)
|
843 |
+
yield "data: [DONE]\n\n"
|
844 |
+
return Response(
|
845 |
+
stream_with_context(generate()),
|
846 |
+
content_type="text/event-stream"
|
847 |
+
)
|
848 |
+
first_chunk_time = None
|
849 |
+
full_response_content = ""
|
850 |
+
reasoning_content_accumulated = ""
|
851 |
+
content_accumulated = ""
|
852 |
+
first_reasoning_chunk = True
|
853 |
+
for chunk in response.iter_lines():
|
854 |
+
if chunk:
|
855 |
+
if first_chunk_time is None:
|
856 |
+
first_chunk_time = time.time()
|
857 |
+
full_response_content += chunk.decode("utf-8")
|
858 |
+
for line in chunk.decode("utf-8").splitlines():
|
859 |
+
if line.startswith("data:"):
|
860 |
+
try:
|
861 |
+
chunk_json = json.loads(line.lstrip("data: ").strip())
|
862 |
+
if "choices" in chunk_json and len(chunk_json["choices"]) > 0:
|
863 |
+
delta = chunk_json["choices"][0].get("delta", {})
|
864 |
+
if delta.get("reasoning_content") is not None:
|
865 |
+
reasoning_chunk = delta["reasoning_content"]
|
866 |
+
reasoning_chunk = reasoning_chunk.replace('\n', '\n> ')
|
867 |
+
if first_reasoning_chunk:
|
868 |
+
reasoning_chunk = "> " + reasoning_chunk
|
869 |
+
first_reasoning_chunk = False
|
870 |
+
yield f"data: {json.dumps({'choices': [{'delta': {'content': reasoning_chunk}, 'index': 0}]})}\n\n"
|
871 |
+
if delta.get("content") is not None:
|
872 |
+
if not first_reasoning_chunk:
|
873 |
+
yield f"data: {json.dumps({'choices': [{'delta': {'content': '\n\n'}, 'index': 0}]})}\n\n"
|
874 |
+
first_reasoning_chunk = True
|
875 |
+
yield f"data: {json.dumps({'choices': [{'delta': {'content': delta["content"]}, 'index': 0}]})}\n\n"
|
876 |
+
except (KeyError, ValueError, json.JSONDecodeError) as e:
|
877 |
+
continue
|
878 |
+
end_time = time.time()
|
879 |
+
first_token_time = (
|
880 |
+
first_chunk_time - start_time
|
881 |
+
if first_chunk_time else 0
|
882 |
+
)
|
883 |
+
total_time = end_time - start_time
|
884 |
+
prompt_tokens = 0
|
885 |
+
completion_tokens = 0
|
886 |
+
for line in full_response_content.splitlines():
|
887 |
+
if line.startswith("data:"):
|
888 |
+
line = line[5:].strip()
|
889 |
+
if line == "[DONE]":
|
890 |
+
continue
|
891 |
+
try:
|
892 |
+
response_json = json.loads(line)
|
893 |
+
if (
|
894 |
+
"usage" in response_json and
|
895 |
+
"completion_tokens" in response_json["usage"]
|
896 |
+
):
|
897 |
+
completion_tokens += response_json[
|
898 |
+
"usage"
|
899 |
+
]["completion_tokens"]
|
900 |
+
if (
|
901 |
+
"usage" in response_json and
|
902 |
+
"prompt_tokens" in response_json["usage"]
|
903 |
+
):
|
904 |
+
prompt_tokens = response_json[
|
905 |
+
"usage"
|
906 |
+
]["prompt_tokens"]
|
907 |
+
except (KeyError,ValueError,IndexError) as e:
|
908 |
+
pass
|
909 |
+
user_content = ""
|
910 |
+
messages = data.get("messages", [])
|
911 |
+
for message in messages:
|
912 |
+
if message["role"] == "user":
|
913 |
+
if isinstance(message["content"], str):
|
914 |
+
user_content += message["content"] + " "
|
915 |
+
elif isinstance(message["content"], list):
|
916 |
+
for item in message["content"]:
|
917 |
+
if (
|
918 |
+
isinstance(item, dict) and
|
919 |
+
item.get("type") == "text"
|
920 |
+
):
|
921 |
+
user_content += (
|
922 |
+
item.get("text", "") +
|
923 |
+
" "
|
924 |
+
)
|
925 |
+
user_content = user_content.strip()
|
926 |
+
user_content_replaced = user_content.replace(
|
927 |
+
'\n', '\\n'
|
928 |
+
).replace('\r', '\\n')
|
929 |
+
response_content_replaced = (f"```Thinking\n{reasoning_content_accumulated}\n```\n" if reasoning_content_accumulated else "") + content_accumulated
|
930 |
+
response_content_replaced = response_content_replaced.replace(
|
931 |
+
'\n', '\\n'
|
932 |
+
).replace('\r', '\\n')
|
933 |
+
logging.info(
|
934 |
+
f"使用的key: {api_key}, "
|
935 |
+
f"提示token: {prompt_tokens}, "
|
936 |
+
f"输出token: {completion_tokens}, "
|
937 |
+
f"首字用时: {first_token_time:.4f}秒, "
|
938 |
+
f"总共用时: {total_time:.4f}秒, "
|
939 |
+
f"使用的模型: {model_name}, "
|
940 |
+
f"用户的内容: {user_content_replaced}, "
|
941 |
+
f"输出的内容: {response_content_replaced}"
|
942 |
+
)
|
943 |
+
with data_lock:
|
944 |
+
request_timestamps.append(time.time())
|
945 |
+
token_counts.append(prompt_tokens + completion_tokens)
|
946 |
+
yield "data: [DONE]\n\n"
|
947 |
+
return Response(
|
948 |
+
stream_with_context(generate()),
|
949 |
+
content_type="text/event-stream"
|
950 |
+
)
|
951 |
+
else:
|
952 |
+
response.raise_for_status()
|
953 |
+
end_time = time.time()
|
954 |
+
response_json = response.json()
|
955 |
+
total_time = end_time - start_time
|
956 |
+
try:
|
957 |
+
prompt_tokens = response_json["usage"]["prompt_tokens"]
|
958 |
+
completion_tokens = response_json["usage"]["completion_tokens"]
|
959 |
+
response_content = ""
|
960 |
+
if model_name.endswith("-thinking") and "choices" in response_json and len(response_json["choices"]) > 0:
|
961 |
+
choice = response_json["choices"][0]
|
962 |
+
if "message" in choice:
|
963 |
+
if "reasoning_content" in choice["message"]:
|
964 |
+
reasoning_content = choice["message"]["reasoning_content"]
|
965 |
+
reasoning_content = reasoning_content.replace('\n', '\n> ')
|
966 |
+
reasoning_content = '> ' + reasoning_content
|
967 |
+
formatted_reasoning = f"{reasoning_content}\n"
|
968 |
+
response_content += formatted_reasoning + "\n"
|
969 |
+
if "content" in choice["message"]:
|
970 |
+
response_content += choice["message"]["content"]
|
971 |
+
elif model_name.endswith("-openwebui") and "choices" in response_json and len(response_json["choices"]) > 0:
|
972 |
+
choice = response_json["choices"][0]
|
973 |
+
if "message" in choice:
|
974 |
+
if "reasoning_content" in choice["message"]:
|
975 |
+
reasoning_content = choice["message"]["reasoning_content"]
|
976 |
+
response_content += f"<think>\n{reasoning_content}\n</think>\n"
|
977 |
+
if "content" in choice["message"]:
|
978 |
+
response_content += choice["message"]["content"]
|
979 |
+
except (KeyError, ValueError, IndexError) as e:
|
980 |
+
logging.error(
|
981 |
+
f"解析非流式响应 JSON 失败: {e}, "
|
982 |
+
f"完整内容: {response_json}"
|
983 |
+
)
|
984 |
+
prompt_tokens = 0
|
985 |
+
completion_tokens = 0
|
986 |
+
response_content = ""
|
987 |
+
user_content = ""
|
988 |
+
messages = data.get("messages", [])
|
989 |
+
for message in messages:
|
990 |
+
if message["role"] == "user":
|
991 |
+
if isinstance(message["content"], str):
|
992 |
+
user_content += message["content"] + " "
|
993 |
+
elif isinstance(message["content"], list):
|
994 |
+
for item in message["content"]:
|
995 |
+
if (
|
996 |
+
isinstance(item, dict) and
|
997 |
+
item.get("type") == "text"
|
998 |
+
):
|
999 |
+
user_content += (
|
1000 |
+
item.get("text", "") +
|
1001 |
+
" "
|
1002 |
+
)
|
1003 |
+
user_content = user_content.strip()
|
1004 |
+
user_content_replaced = user_content.replace(
|
1005 |
+
'\n', '\\n'
|
1006 |
+
).replace('\r', '\\n')
|
1007 |
+
response_content_replaced = response_content.replace(
|
1008 |
+
'\n', '\\n'
|
1009 |
+
).replace('\r', '\\n')
|
1010 |
+
logging.info(
|
1011 |
+
f"使用的key: {api_key}, "
|
1012 |
+
f"提示token: {prompt_tokens}, "
|
1013 |
+
f"输出token: {completion_tokens}, "
|
1014 |
+
f"首字用时: 0, "
|
1015 |
+
f"总共用时: {total_time:.4f}秒, "
|
1016 |
+
f"使用的模型: {model_name}, "
|
1017 |
+
f"用户的内容: {user_content_replaced}, "
|
1018 |
+
f"输出的内容: {response_content_replaced}"
|
1019 |
+
)
|
1020 |
+
with data_lock:
|
1021 |
+
request_timestamps.append(time.time())
|
1022 |
+
token_counts.append(prompt_tokens + completion_tokens)
|
1023 |
+
formatted_response = {
|
1024 |
+
"id": response_json.get("id", ""),
|
1025 |
+
"object": "chat.completion",
|
1026 |
+
"created": response_json.get("created", int(time.time())),
|
1027 |
+
"model": model_name,
|
1028 |
+
"choices": [
|
1029 |
+
{
|
1030 |
+
"index": 0,
|
1031 |
+
"message": {
|
1032 |
+
"role": "assistant",
|
1033 |
+
"content": response_content
|
1034 |
+
},
|
1035 |
+
"finish_reason": "stop"
|
1036 |
+
}
|
1037 |
+
],
|
1038 |
+
"usage": {
|
1039 |
+
"prompt_tokens": prompt_tokens,
|
1040 |
+
"completion_tokens": completion_tokens,
|
1041 |
+
"total_tokens": prompt_tokens + completion_tokens
|
1042 |
+
}
|
1043 |
+
}
|
1044 |
+
return jsonify(formatted_response)
|
1045 |
+
if model_name in models["image"]:
|
1046 |
+
if isinstance(data.get("messages"), list):
|
1047 |
+
data = data.copy()
|
1048 |
+
data["prompt"] = extract_user_content(data["messages"])
|
1049 |
+
siliconflow_data = get_siliconflow_data(model_name, data)
|
1050 |
+
try:
|
1051 |
+
start_time = time.time()
|
1052 |
+
response = requests.post(
|
1053 |
+
IMAGE_ENDPOINT,
|
1054 |
+
headers=headers,
|
1055 |
+
json=siliconflow_data,
|
1056 |
+
stream=data.get("stream", False)
|
1057 |
+
)
|
1058 |
+
if response.status_code == 429:
|
1059 |
+
return jsonify(response.json()), 429
|
1060 |
+
if data.get("stream", False):
|
1061 |
+
def generate():
|
1062 |
+
try:
|
1063 |
+
response.raise_for_status()
|
1064 |
+
response_json = response.json()
|
1065 |
+
images = response_json.get("images", [])
|
1066 |
+
image_url = ""
|
1067 |
+
if images and isinstance(images[0], dict) and "url" in images[0]:
|
1068 |
+
image_url = images[0]["url"]
|
1069 |
+
logging.info(f"Extracted image URL: {image_url}")
|
1070 |
+
elif images and isinstance(images[0], str):
|
1071 |
+
image_url = images[0]
|
1072 |
+
logging.info(f"Extracted image URL: {image_url}")
|
1073 |
+
markdown_image_link = create_base64_markdown_image(image_url)
|
1074 |
+
if image_url:
|
1075 |
+
chunk_size = 8192
|
1076 |
+
for i in range(0, len(markdown_image_link), chunk_size):
|
1077 |
+
chunk = markdown_image_link[i:i + chunk_size]
|
1078 |
+
chunk_data = {
|
1079 |
+
"id": f"chatcmpl-{uuid.uuid4()}",
|
1080 |
+
"object": "chat.completion.chunk",
|
1081 |
+
"created": int(time.time()),
|
1082 |
+
"model": model_name,
|
1083 |
+
"choices": [
|
1084 |
+
{
|
1085 |
+
"index": 0,
|
1086 |
+
"delta": {
|
1087 |
+
"role": "assistant",
|
1088 |
+
"content": chunk
|
1089 |
+
},
|
1090 |
+
"finish_reason": None
|
1091 |
+
}
|
1092 |
+
]
|
1093 |
+
}
|
1094 |
+
yield f"data: {json.dumps(chunk_data)}\n\n".encode('utf-8')
|
1095 |
+
else:
|
1096 |
+
chunk_data = {
|
1097 |
+
"id": f"chatcmpl-{uuid.uuid4()}",
|
1098 |
+
"object": "chat.completion.chunk",
|
1099 |
+
"created": int(time.time()),
|
1100 |
+
"model": model_name,
|
1101 |
+
"choices": [
|
1102 |
+
{
|
1103 |
+
"index": 0,
|
1104 |
+
"delta": {
|
1105 |
+
"role": "assistant",
|
1106 |
+
"content": "Failed to generate image"
|
1107 |
+
},
|
1108 |
+
"finish_reason": None
|
1109 |
+
}
|
1110 |
+
]
|
1111 |
+
}
|
1112 |
+
yield f"data: {json.dumps(chunk_data)}\n\n".encode('utf-8')
|
1113 |
+
end_chunk_data = {
|
1114 |
+
"id": f"chatcmpl-{uuid.uuid4()}",
|
1115 |
+
"object": "chat.completion.chunk",
|
1116 |
+
"created": int(time.time()),
|
1117 |
+
"model": model_name,
|
1118 |
+
"choices": [
|
1119 |
+
{
|
1120 |
+
"index": 0,
|
1121 |
+
"delta": {},
|
1122 |
+
"finish_reason": "stop"
|
1123 |
+
}
|
1124 |
+
]
|
1125 |
+
}
|
1126 |
+
yield f"data: {json.dumps(end_chunk_data)}\n\n".encode('utf-8')
|
1127 |
+
with data_lock:
|
1128 |
+
request_timestamps.append(time.time())
|
1129 |
+
token_counts.append(0)
|
1130 |
+
request_timestamps_day.append(time.time())
|
1131 |
+
token_counts_day.append(0)
|
1132 |
+
except requests.exceptions.RequestException as e:
|
1133 |
+
logging.error(f"请求转发异常: {e}")
|
1134 |
+
error_chunk_data = {
|
1135 |
+
"id": f"chatcmpl-{uuid.uuid4()}",
|
1136 |
+
"object": "chat.completion.chunk",
|
1137 |
+
"created": int(time.time()),
|
1138 |
+
"model": model_name,
|
1139 |
+
"choices": [
|
1140 |
+
{
|
1141 |
+
"index": 0,
|
1142 |
+
"delta": {
|
1143 |
+
"role": "assistant",
|
1144 |
+
"content": f"Error: {str(e)}"
|
1145 |
+
},
|
1146 |
+
"finish_reason": None
|
1147 |
+
}
|
1148 |
+
]
|
1149 |
+
}
|
1150 |
+
yield f"data: {json.dumps(error_chunk_data)}\n\n".encode('utf-8')
|
1151 |
+
end_chunk_data = {
|
1152 |
+
"id": f"chatcmpl-{uuid.uuid4()}",
|
1153 |
+
"object": "chat.completion.chunk",
|
1154 |
+
"created": int(time.time()),
|
1155 |
+
"model": model_name,
|
1156 |
+
"choices": [
|
1157 |
+
{
|
1158 |
+
"index": 0,
|
1159 |
+
"delta": {},
|
1160 |
+
"finish_reason": "stop"
|
1161 |
+
}
|
1162 |
+
]
|
1163 |
+
}
|
1164 |
+
yield f"data: {json.dumps(end_chunk_data)}\n\n".encode('utf-8')
|
1165 |
+
logging.info(
|
1166 |
+
f"使用的key: {api_key}, "
|
1167 |
+
f"使用的模型: {model_name}"
|
1168 |
+
)
|
1169 |
+
yield "data: [DONE]\n\n".encode('utf-8')
|
1170 |
+
return Response(stream_with_context(generate()), content_type='text/event-stream')
|
1171 |
+
else:
|
1172 |
+
response.raise_for_status()
|
1173 |
+
end_time = time.time()
|
1174 |
+
response_json = response.json()
|
1175 |
+
total_time = end_time - start_time
|
1176 |
+
try:
|
1177 |
+
images = response_json.get("images", [])
|
1178 |
+
image_url = ""
|
1179 |
+
if images and isinstance(images[0], dict) and "url" in images[0]:
|
1180 |
+
image_url = images[0]["url"]
|
1181 |
+
logging.info(f"Extracted image URL: {image_url}")
|
1182 |
+
elif images and isinstance(images[0], str):
|
1183 |
+
image_url = images[0]
|
1184 |
+
logging.info(f"Extracted image URL: {image_url}")
|
1185 |
+
markdown_image_link = f""
|
1186 |
+
response_data = {
|
1187 |
+
"id": f"chatcmpl-{uuid.uuid4()}",
|
1188 |
+
"object": "chat.completion",
|
1189 |
+
"created": int(time.time()),
|
1190 |
+
"model": model_name,
|
1191 |
+
"choices": [
|
1192 |
+
{
|
1193 |
+
"index": 0,
|
1194 |
+
"message": {
|
1195 |
+
"role": "assistant",
|
1196 |
+
"content": markdown_image_link if image_url else "Failed to generate image",
|
1197 |
+
},
|
1198 |
+
"finish_reason": "stop",
|
1199 |
+
}
|
1200 |
+
],
|
1201 |
+
}
|
1202 |
+
except (KeyError, ValueError, IndexError) as e:
|
1203 |
+
logging.error(
|
1204 |
+
f"解析响应 JSON 失败: {e}, "
|
1205 |
+
f"完整内容: {response_json}"
|
1206 |
+
)
|
1207 |
+
response_data = {
|
1208 |
+
"id": f"chatcmpl-{uuid.uuid4()}",
|
1209 |
+
"object": "chat.completion",
|
1210 |
+
"created": int(time.time()),
|
1211 |
+
"model": model_name,
|
1212 |
+
"choices": [
|
1213 |
+
{
|
1214 |
+
"index": 0,
|
1215 |
+
"message": {
|
1216 |
+
"role": "assistant",
|
1217 |
+
"content": "Failed to process image data",
|
1218 |
+
},
|
1219 |
+
"finish_reason": "stop",
|
1220 |
+
}
|
1221 |
+
],
|
1222 |
+
}
|
1223 |
+
logging.info(
|
1224 |
+
f"使用的key: {api_key}, "
|
1225 |
+
f"总共用时: {total_time:.4f}秒, "
|
1226 |
+
f"使用的模型: {model_name}"
|
1227 |
+
)
|
1228 |
+
with data_lock:
|
1229 |
+
request_timestamps.append(time.time())
|
1230 |
+
token_counts.append(0)
|
1231 |
+
request_timestamps_day.append(time.time())
|
1232 |
+
token_counts_day.append(0)
|
1233 |
+
return jsonify(response_data)
|
1234 |
+
except requests.exceptions.RequestException as e:
|
1235 |
+
logging.error(f"请求转发异常: {e}")
|
1236 |
+
return jsonify({"error": str(e)}), 500
|
1237 |
+
else:
|
1238 |
+
try:
|
1239 |
+
start_time = time.time()
|
1240 |
+
response = requests.post(
|
1241 |
+
TEST_MODEL_ENDPOINT,
|
1242 |
+
headers=headers,
|
1243 |
+
json=data,
|
1244 |
+
stream=data.get("stream", False)
|
1245 |
+
)
|
1246 |
+
if response.status_code == 429:
|
1247 |
+
return jsonify(response.json()), 429
|
1248 |
+
if data.get("stream", False):
|
1249 |
+
def generate():
|
1250 |
+
first_chunk_time = None
|
1251 |
+
full_response_content = ""
|
1252 |
+
for chunk in response.iter_content(chunk_size=2048):
|
1253 |
+
if chunk:
|
1254 |
+
if first_chunk_time is None:
|
1255 |
+
first_chunk_time = time.time()
|
1256 |
+
full_response_content += chunk.decode("utf-8")
|
1257 |
+
yield chunk
|
1258 |
+
end_time = time.time()
|
1259 |
+
first_token_time = (
|
1260 |
+
first_chunk_time - start_time
|
1261 |
+
if first_chunk_time else 0
|
1262 |
+
)
|
1263 |
+
total_time = end_time - start_time
|
1264 |
+
prompt_tokens = 0
|
1265 |
+
completion_tokens = 0
|
1266 |
+
response_content = ""
|
1267 |
+
for line in full_response_content.splitlines():
|
1268 |
+
if line.startswith("data:"):
|
1269 |
+
line = line[5:].strip()
|
1270 |
+
if line == "[DONE]":
|
1271 |
+
continue
|
1272 |
+
try:
|
1273 |
+
response_json = json.loads(line)
|
1274 |
+
if (
|
1275 |
+
"usage" in response_json and
|
1276 |
+
"completion_tokens" in response_json["usage"]
|
1277 |
+
):
|
1278 |
+
completion_tokens = response_json[
|
1279 |
+
"usage"
|
1280 |
+
]["completion_tokens"]
|
1281 |
+
if (
|
1282 |
+
"choices" in response_json and
|
1283 |
+
len(response_json["choices"]) > 0 and
|
1284 |
+
"delta" in response_json["choices"][0] and
|
1285 |
+
"content" in response_json[
|
1286 |
+
"choices"
|
1287 |
+
][0]["delta"]
|
1288 |
+
):
|
1289 |
+
response_content += response_json[
|
1290 |
+
"choices"
|
1291 |
+
][0]["delta"]["content"]
|
1292 |
+
if (
|
1293 |
+
"usage" in response_json and
|
1294 |
+
"prompt_tokens" in response_json["usage"]
|
1295 |
+
):
|
1296 |
+
prompt_tokens = response_json[
|
1297 |
+
"usage"
|
1298 |
+
]["prompt_tokens"]
|
1299 |
+
except (
|
1300 |
+
KeyError,
|
1301 |
+
ValueError,
|
1302 |
+
IndexError
|
1303 |
+
) as e:
|
1304 |
+
logging.error(
|
1305 |
+
f"解析流式响应单行 JSON 失败: {e}, "
|
1306 |
+
f"行内容: {line}"
|
1307 |
+
)
|
1308 |
+
user_content = extract_user_content(data.get("messages", []))
|
1309 |
+
user_content_replaced = user_content.replace(
|
1310 |
+
'\n', '\\n'
|
1311 |
+
).replace('\r', '\\n')
|
1312 |
+
response_content_replaced = response_content.replace(
|
1313 |
+
'\n', '\\n'
|
1314 |
+
).replace('\r', '\\n')
|
1315 |
+
logging.info(
|
1316 |
+
f"使用的key: {api_key}, "
|
1317 |
+
f"提示token: {prompt_tokens}, "
|
1318 |
+
f"输出token: {completion_tokens}, "
|
1319 |
+
f"首字用时: {first_token_time:.4f}秒, "
|
1320 |
+
f"总共用时: {total_time:.4f}秒, "
|
1321 |
+
f"使用的模型: {model_name}, "
|
1322 |
+
f"用户的内容: {user_content_replaced}, "
|
1323 |
+
f"输出的内容: {response_content_replaced}"
|
1324 |
+
)
|
1325 |
+
with data_lock:
|
1326 |
+
request_timestamps.append(time.time())
|
1327 |
+
token_counts.append(prompt_tokens+completion_tokens)
|
1328 |
+
request_timestamps_day.append(time.time())
|
1329 |
+
token_counts_day.append(prompt_tokens+completion_tokens)
|
1330 |
+
return Response(
|
1331 |
+
stream_with_context(generate()),
|
1332 |
+
content_type=response.headers['Content-Type']
|
1333 |
+
)
|
1334 |
+
else:
|
1335 |
+
response.raise_for_status()
|
1336 |
+
end_time = time.time()
|
1337 |
+
response_json = response.json()
|
1338 |
+
total_time = end_time - start_time
|
1339 |
+
try:
|
1340 |
+
prompt_tokens = response_json["usage"]["prompt_tokens"]
|
1341 |
+
completion_tokens = response_json[
|
1342 |
+
"usage"
|
1343 |
+
]["completion_tokens"]
|
1344 |
+
response_content = response_json[
|
1345 |
+
"choices"
|
1346 |
+
][0]["message"]["content"]
|
1347 |
+
except (KeyError, ValueError, IndexError) as e:
|
1348 |
+
logging.error(
|
1349 |
+
f"解析非流式响应 JSON 失败: {e}, "
|
1350 |
+
f"完整内容: {response_json}"
|
1351 |
+
)
|
1352 |
+
prompt_tokens = 0
|
1353 |
+
completion_tokens = 0
|
1354 |
+
response_content = ""
|
1355 |
+
user_content = extract_user_content(data.get("messages", []))
|
1356 |
+
user_content_replaced = user_content.replace(
|
1357 |
+
'\n', '\\n'
|
1358 |
+
).replace('\r', '\\n')
|
1359 |
+
response_content_replaced = response_content.replace(
|
1360 |
+
'\n', '\\n'
|
1361 |
+
).replace('\r', '\\n')
|
1362 |
+
logging.info(
|
1363 |
+
f"使用的key: {api_key}, "
|
1364 |
+
f"提示token: {prompt_tokens}, "
|
1365 |
+
f"输出token: {completion_tokens}, "
|
1366 |
+
f"首字用时: 0, "
|
1367 |
+
f"总共用时: {total_time:.4f}秒, "
|
1368 |
+
f"使用的模型: {model_name}, "
|
1369 |
+
f"用户的内容: {user_content_replaced}, "
|
1370 |
+
f"输出的内容: {response_content_replaced}"
|
1371 |
+
)
|
1372 |
+
with data_lock:
|
1373 |
+
request_timestamps.append(time.time())
|
1374 |
+
if "prompt_tokens" in response_json["usage"] and "completion_tokens" in response_json["usage"]:
|
1375 |
+
token_counts.append(response_json["usage"]["prompt_tokens"] + response_json["usage"]["completion_tokens"])
|
1376 |
+
else:
|
1377 |
+
token_counts.append(0)
|
1378 |
+
request_timestamps_day.append(time.time())
|
1379 |
+
if "prompt_tokens" in response_json["usage"] and "completion_tokens" in response_json["usage"]:
|
1380 |
+
token_counts_day.append(response_json["usage"]["prompt_tokens"] + response_json["usage"]["completion_tokens"])
|
1381 |
+
else:
|
1382 |
+
token_counts_day.append(0)
|
1383 |
+
return jsonify(response_json)
|
1384 |
+
except requests.exceptions.RequestException as e:
|
1385 |
+
logging.error(f"请求转发异常: {e}")
|
1386 |
+
return jsonify({"error": str(e)}), 500
|
1387 |
+
if __name__ == '__main__':
|
1388 |
+
logging.info(f"环境变量:{os.environ}")
|
1389 |
+
load_keys()
|
1390 |
+
logging.info("程序启动时首次加载 keys 已执行")
|
1391 |
+
scheduler.start()
|
1392 |
+
logging.info("首次加载 keys 已手动触发执行")
|
1393 |
+
refresh_models()
|
1394 |
+
logging.info("首次刷新模型列表已手动触发执行")
|
1395 |
+
app.run(debug=False,host='0.0.0.0',port=int(os.environ.get('PORT', 7860)))
|
1396 |
+
|