Spaces:
Runtime error
Runtime error
| from transformers import TextGenerationPipeline | |
| from transformers.pipelines.text_generation import ReturnType | |
| from stopping import get_stopping | |
| prompt_type = "human_bot" | |
| human = "<human>:" | |
| bot = "<bot>:" | |
| # human-bot interaction like OIG dataset | |
| prompt = """{human} {instruction} | |
| {bot}""".format( | |
| human=human, | |
| instruction="{instruction}", | |
| bot=bot, | |
| ) | |
| class H2OTextGenerationPipeline(TextGenerationPipeline): | |
| def __init__(self, *args, use_prompter=False, debug=False, chat=False, stream_output=False, | |
| sanitize_bot_response=True, **kwargs): | |
| super().__init__(*args, **kwargs) | |
| self.use_prompter = use_prompter | |
| self.prompt_text = None | |
| if self.use_prompter: | |
| from prompter import Prompter | |
| self.prompter = Prompter(prompt_type, debug=debug, chat=chat, stream_output=stream_output) | |
| else: | |
| self.prompter = None | |
| self.sanitize_bot_response = sanitize_bot_response | |
| def preprocess(self, prompt_text, prefix="", handle_long_generation=None, **generate_kwargs): | |
| prompt_text = prompt.format(instruction=prompt_text) | |
| self.prompt_text = prompt_text | |
| return super().preprocess(prompt_text, prefix=prefix, handle_long_generation=handle_long_generation, | |
| **generate_kwargs) | |
| def postprocess(self, model_outputs, return_type=ReturnType.FULL_TEXT, clean_up_tokenization_spaces=True): | |
| records = super().postprocess(model_outputs, return_type=return_type, | |
| clean_up_tokenization_spaces=clean_up_tokenization_spaces) | |
| for rec in records: | |
| if self.use_prompter: | |
| outputs = rec['generated_text'] | |
| outputs = self.prompter.get_response(outputs, prompt=self.prompt_text, | |
| sanitize_bot_response=self.sanitize_bot_response) | |
| else: | |
| outputs = rec['generated_text'].split(bot)[1].strip().split(human)[0].strip() | |
| rec['generated_text'] = outputs | |
| return records | |
| def _forward(self, model_inputs, **generate_kwargs): | |
| stopping_criteria = get_stopping(prompt_type, self.tokenizer, self.device, human=human, bot=bot) | |
| generate_kwargs['stopping_criteria'] = stopping_criteria | |
| return super()._forward(model_inputs, **generate_kwargs) | |