Gary commited on
Commit
4ff3551
·
1 Parent(s): 1d656af

revert to flan-5 model

Browse files
Files changed (2) hide show
  1. app.py +2 -2
  2. indexer.py +18 -18
app.py CHANGED
@@ -30,8 +30,8 @@ class CustomRAG:
30
 
31
 
32
  def answer_question(query):
33
- # llm = get_llm("google/flan-t5-base")
34
- llm = get_llm("FreedomIntelligence/HuatuoGPT-o1-7B")
35
  vector_database = create_vector_database("sentence-transformers/all-MiniLM-L6-v2")
36
  prompt_template = get_prompt_template()
37
  rag = CustomRAG(
 
30
 
31
 
32
  def answer_question(query):
33
+ llm = get_llm("google/flan-t5-base")
34
+ # llm = get_llm("FreedomIntelligence/HuatuoGPT-o1-7B")
35
  vector_database = create_vector_database("sentence-transformers/all-MiniLM-L6-v2")
36
  prompt_template = get_prompt_template()
37
  rag = CustomRAG(
indexer.py CHANGED
@@ -49,31 +49,31 @@ def create_vector_database(model_name):
49
 
50
  def get_llm(model_name):
51
  tokenizer = AutoTokenizer.from_pretrained(model_name)
52
- # model = AutoModelForSeq2SeqLM.from_pretrained(
53
- # "google/flan-t5-base", torch_dtype="auto", device_map="auto"
54
- # )
55
-
56
- # pipe = pipeline(
57
- # "text2text-generation",
58
- # model=model,
59
- # tokenizer=tokenizer,
60
- # max_new_tokens=512,
61
- # temperature=1,
62
- # do_sample=True,
63
- # )
64
-
65
- model = AutoModelForCausalLM.from_pretrained(
66
- model_name, torch_dtype="auto", device_map="auto"
67
  )
 
68
  pipe = pipeline(
69
- "text-generation",
70
  model=model,
71
  tokenizer=tokenizer,
72
- max_new_tokens=1024,
73
- temperature=0.7,
74
  do_sample=True,
75
  )
76
 
 
 
 
 
 
 
 
 
 
 
 
 
77
  llm = HuggingFacePipeline(pipeline=pipe)
78
  return llm
79
 
 
49
 
50
  def get_llm(model_name):
51
  tokenizer = AutoTokenizer.from_pretrained(model_name)
52
+ model = AutoModelForSeq2SeqLM.from_pretrained(
53
+ "google/flan-t5-base", torch_dtype="auto", device_map="auto"
 
 
 
 
 
 
 
 
 
 
 
 
 
54
  )
55
+
56
  pipe = pipeline(
57
+ "text2text-generation",
58
  model=model,
59
  tokenizer=tokenizer,
60
+ max_new_tokens=512,
61
+ temperature=1,
62
  do_sample=True,
63
  )
64
 
65
+ # model = AutoModelForCausalLM.from_pretrained(
66
+ # model_name, torch_dtype="auto", device_map="auto"
67
+ # )
68
+ # pipe = pipeline(
69
+ # "text-generation",
70
+ # model=model,
71
+ # tokenizer=tokenizer,
72
+ # max_new_tokens=1024,
73
+ # temperature=0.7,
74
+ # do_sample=True,
75
+ # )
76
+
77
  llm = HuggingFacePipeline(pipeline=pipe)
78
  return llm
79