hibana2077 commited on
Commit
e3b3d38
1 Parent(s): a34dfff

Add Drop col

Browse files
Files changed (1) hide show
  1. app.py +5 -4
app.py CHANGED
@@ -2,7 +2,7 @@
2
  Author: hibana2077 [email protected]
3
  Date: 2024-01-02 21:43:38
4
  LastEditors: hibana2077 [email protected]
5
- LastEditTime: 2024-01-03 18:23:40
6
  FilePath: \hayabusa\src\main.py
7
  Description: 这是默认设置,请设置`customMade`, 打开koroFileHeader查看配置 进行设置: https://github.com/OBKoro1/koro1FileHeader/wiki/%E9%85%8D%E7%BD%AE
8
  '''
@@ -34,7 +34,7 @@ if choice == "Upload":
34
  file = st.file_uploader("Upload Your Dataset")
35
  if file:
36
  df = pd.read_csv(file, index_col=None)
37
- df.drop("Unnamed: 0", axis=1, inplace=True) if "Unnamed: 0" in df.columns else None
38
  df.to_csv('dataset.csv', index=None)
39
  st.dataframe(df)
40
  st.session_state['df'] = df
@@ -48,11 +48,12 @@ if choice == "Profiling":
48
  if choice == "Modelling":
49
  df:pd.DataFrame = st.session_state['df']
50
  chosen_target = st.selectbox('Choose the Target Column', df.columns)
 
51
  ml_task = st.selectbox('Choose the ML Task', ['Classification', 'Regression'])
52
  if st.button('Run Modelling'):
53
  if ml_task == 'Classification':
54
  from pycaret.classification import setup, compare_models, pull, save_model, get_config
55
- setup(df, target=chosen_target)
56
  setup_df = pull()
57
  st.dataframe(setup_df)
58
  best_model = compare_models(exclude=['lightgbm'])
@@ -67,7 +68,7 @@ if choice == "Modelling":
67
  pickle.dump(pipeline, f)
68
  else:
69
  from pycaret.regression import setup, compare_models, pull, save_model
70
- setup(df, target=chosen_target)
71
  setup_df = pull()
72
  st.dataframe(setup_df)
73
  best_model = compare_models(exclude=['lightgbm'])
 
2
  Author: hibana2077 [email protected]
3
  Date: 2024-01-02 21:43:38
4
  LastEditors: hibana2077 [email protected]
5
+ LastEditTime: 2024-01-04 22:21:47
6
  FilePath: \hayabusa\src\main.py
7
  Description: 这是默认设置,请设置`customMade`, 打开koroFileHeader查看配置 进行设置: https://github.com/OBKoro1/koro1FileHeader/wiki/%E9%85%8D%E7%BD%AE
8
  '''
 
34
  file = st.file_uploader("Upload Your Dataset")
35
  if file:
36
  df = pd.read_csv(file, index_col=None)
37
+ df.drop("Unnamed: 0", axis=1, inplace=True) if "Unnamed: 0" in df.columns else "No Unnamed: 0 Detected"
38
  df.to_csv('dataset.csv', index=None)
39
  st.dataframe(df)
40
  st.session_state['df'] = df
 
48
  if choice == "Modelling":
49
  df:pd.DataFrame = st.session_state['df']
50
  chosen_target = st.selectbox('Choose the Target Column', df.columns)
51
+ drop_columns = st.multiselect('Choose the Columns to Drop', df.columns)
52
  ml_task = st.selectbox('Choose the ML Task', ['Classification', 'Regression'])
53
  if st.button('Run Modelling'):
54
  if ml_task == 'Classification':
55
  from pycaret.classification import setup, compare_models, pull, save_model, get_config
56
+ setup(df, target=chosen_target, ignore_features=drop_columns)
57
  setup_df = pull()
58
  st.dataframe(setup_df)
59
  best_model = compare_models(exclude=['lightgbm'])
 
68
  pickle.dump(pipeline, f)
69
  else:
70
  from pycaret.regression import setup, compare_models, pull, save_model
71
+ setup(df, target=chosen_target, ignore_features=drop_columns)
72
  setup_df = pull()
73
  st.dataframe(setup_df)
74
  best_model = compare_models(exclude=['lightgbm'])