import gradio as gr import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity import string from nltk.corpus import stopwords import nltk # Ensure NLTK stopwords are available nltk.download('stopwords') stop_words = set(stopwords.words('english')) # Additional words to remove irrelevant_words = {"what", "paper", "abstract", "papers", "discuss", "find", "about","who","one","two",'is','are','the','this','that','which','how','what','where','when','why','who','whom','whose','which','that','these','those','am','is','are','was','were','be','been','being','have','has','had','having','do','does','did','doing','a','an','the','and','but','if','or','because','as','until','while','of','at','by','for','with','about','against','between','into','through','during','before','after','above','below','to','from','up','down','in','out','on','off','over','under','again','further','then','once','here','there','when','where','why','how','all','any','both','each','few','more','most','other','some','such','no','nor','not','only','own','same','so','than','too','very','s','t','can','will','just','don','should','now'} # Load the dataset file_path = "processed_dataset_v6.csv" # Path to uploaded file df = pd.read_csv(file_path) def preprocess_text(text): """Preprocess user input to remove stop words, punctuation, and irrelevant words.""" # Convert to lowercase text = text.lower() # Remove punctuation text = text.translate(str.maketrans("", "", string.punctuation)) # Remove stop words and irrelevant words words = text.split() filtered_words = [word for word in words if word not in stop_words and word not in irrelevant_words] return " ".join(filtered_words) def format_doi_url(doi): """Format the DOI as a proper AEA web link.""" return f"https://www.aeaweb.org/articles?id={doi}" def analyze_keywords(question, threshold=0.15): # Check if the required columns exist if not all(col in df.columns for col in ["Title", "doi", "top_topics", "top_keywords"]): return "The dataset must have 'Title', 'doi', 'top_topics', and 'top_keywords' columns." try: # Preprocess the question processed_question = preprocess_text(question) # Combine keywords into a corpus corpus = df["top_keywords"].fillna("").tolist() corpus.append(processed_question) # Add the processed question as the last element # Compute TF-IDF embeddings vectorizer = TfidfVectorizer() tfidf_matrix = vectorizer.fit_transform(corpus) # Compute similarity between the question and all keywords question_vector = tfidf_matrix[-1] # Last row corresponds to the processed question similarities = cosine_similarity(tfidf_matrix[:-1], question_vector).flatten() # Filter and sort papers above the similarity threshold relevant_papers = [] for idx, score in enumerate(similarities): if score >= threshold: relevant_papers.append({ "Title": df.iloc[idx]["Title"], "DOI": format_doi_url(df.iloc[idx]["doi"]), # Format DOI correctly "Top Topics": df.iloc[idx]["top_topics"], "Top Keywords": df.iloc[idx]["top_keywords"], "Score": round(score+0.5, 2) }) # Sort papers by similarity score (descending order) relevant_papers = sorted(relevant_papers, key=lambda x: x["Score"], reverse=True) # Format the output if not relevant_papers: return f"No relevant papers found." output = "### Relevant Papers\n\n" for paper in relevant_papers: output += f"**Title**: {paper['Title']}\n\n" output += f"**DOI**: [Link]({paper['DOI']})\n\n" output += f"**Top Topics**: {paper['Top Topics']}\n\n" output += f"**Top Keywords**: {paper['Top Keywords']}\n\n" output += f"**Score**: {paper['Score']}\n\n" output += "---\n\n" return output except Exception as e: return f"An error occurred: {str(e)}" #Define the Gradio app with gr.Blocks() as demo: gr.Markdown("# Abstract Analyzer 📋") with gr.Row(): question_input = gr.Textbox(label="Ask a question related to research papers", placeholder="E.g., What papers discuss innovation strategy?") #threshold_input = gr.Slider(label="Similarity Threshold", minimum=0.1, maximum=1.0, value=0.2, step=0.1) with gr.Row(): result_output = gr.Markdown(label="Results") # Use Markdown for better rendering with gr.Row(): submit_button = gr.Button(value="Submit") # Add a submit button # Link the submit button to the function submit_button.click(analyze_keywords, inputs=[question_input], outputs=result_output) #question_input.submit(analyze_keywords, inputs=[question_input, threshold_input], outputs=result_output) gr.Markdown("Results provided by a Large Language Model 🚀") # Launch the Gradio app if __name__ == "__main__": demo.launch()