Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from peft import PeftModel | |
# Load the base model and tokenizer | |
base_model_name = "google/gemma-2-2b-it" | |
tokenizer = AutoTokenizer.from_pretrained(base_model_name) | |
model = AutoModelForCausalLM.from_pretrained(base_model_name) | |
# Load the adapter configuration | |
adapter_name = "hemhemoh/Gemma-2-2b-it-wazobia-bot" | |
model = PeftModel.from_pretrained(model, adapter_name) | |
from transformers import (AutoModelForCausalLM, AutoTokenizer) | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
# Construct messages using the system prompt and conversation history | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
# Add the latest user message | |
messages.append({"role": "user", "content": message}) | |
# Convert the conversation into the appropriate input format | |
prompt = tokenizer.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True | |
) | |
inputs = tokenizer( | |
prompt, return_tensors="pt", padding=True, truncation=True | |
).to("cuda") # Adjust device as necessary | |
# Generate response using your local model | |
outputs = model.generate( | |
**inputs, | |
max_length=max_tokens, # Use max_tokens slider value | |
num_return_sequences=1, | |
top_k=50, | |
top_p=top_p, # Use top_p slider value | |
temperature=temperature, # Use temperature slider value | |
no_repeat_ngram_size=3, | |
) | |
# Decode and clean up the output | |
text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
response = text.split("model")[1].strip() # Adjust if "model" split is unnecessary | |
yield response | |
# Gradio ChatInterface with additional inputs | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox( | |
value="You are a highly skilled and empathetic mental health therapist fluent in English, Yoruba, Igbo, and Hausa. Respond to each user's concerns in the language they use to ensure comfort and understanding.", | |
label="System message", | |
), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |