hemhemoh's picture
Update app.py
ea854a0 verified
raw
history blame
2.76 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
# Load the base model and tokenizer
base_model_name = "google/gemma-2-2b-it"
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
model = AutoModelForCausalLM.from_pretrained(base_model_name)
# Load the adapter configuration
adapter_name = "hemhemoh/Gemma-2-2b-it-wazobia-bot"
model = PeftModel.from_pretrained(model, adapter_name)
from transformers import (AutoModelForCausalLM, AutoTokenizer)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
# Construct messages using the system prompt and conversation history
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
# Add the latest user message
messages.append({"role": "user", "content": message})
# Convert the conversation into the appropriate input format
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
inputs = tokenizer(
prompt, return_tensors="pt", padding=True, truncation=True
).to("cuda") # Adjust device as necessary
# Generate response using your local model
outputs = model.generate(
**inputs,
max_length=max_tokens, # Use max_tokens slider value
num_return_sequences=1,
top_k=50,
top_p=top_p, # Use top_p slider value
temperature=temperature, # Use temperature slider value
no_repeat_ngram_size=3,
)
# Decode and clean up the output
text = tokenizer.decode(outputs[0], skip_special_tokens=True)
response = text.split("model")[1].strip() # Adjust if "model" split is unnecessary
yield response
# Gradio ChatInterface with additional inputs
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(
value="You are a highly skilled and empathetic mental health therapist fluent in English, Yoruba, Igbo, and Hausa. Respond to each user's concerns in the language they use to ensure comfort and understanding.",
label="System message",
),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()