Spaces:
Sleeping
Sleeping
File size: 13,620 Bytes
7658165 039bde1 7658165 039bde1 7658165 039bde1 d7cf785 039bde1 d7cf785 039bde1 7658165 039bde1 7658165 039bde1 7658165 039bde1 7658165 039bde1 7658165 039bde1 7658165 039bde1 7658165 039bde1 7658165 039bde1 7658165 039bde1 7658165 039bde1 d7cf785 039bde1 d7cf785 039bde1 d7cf785 039bde1 7658165 039bde1 7658165 039bde1 7658165 039bde1 7658165 039bde1 7658165 039bde1 7658165 039bde1 7658165 039bde1 d7cf785 039bde1 d7cf785 039bde1 7658165 039bde1 7658165 039bde1 7658165 039bde1 7658165 039bde1 7658165 039bde1 7658165 039bde1 7658165 039bde1 7658165 039bde1 7658165 039bde1 7658165 039bde1 7658165 039bde1 7658165 6ec5b94 7658165 adb850a 7658165 039bde1 7658165 bed3338 7658165 bed3338 7658165 bed3338 7658165 039bde1 7658165 42cd37c 7658165 039bde1 42cd37c 039bde1 7658165 42cd37c 7658165 039bde1 7658165 f566b01 7658165 f566b01 7658165 039bde1 f566b01 bacd5a5 7658165 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
import gradio as gr
import pandas as pd
import re
import csv
import pandas as pd
def update_scores(winner, loser, k_factor=100):
score_difference = int(k_factor/(winner/loser))
winner += score_difference
loser -= score_difference
return winner, loser
def vote_startup(opponents_df):
try:
opponents_df = opponents_df[["elo_score", "descriptor", "opponent"]]
except:
opponents_df = pd.DataFrame(columns=['elo_score', 'descriptor', 'opponent'])
if len(opponents_df)>0:
if len(opponents_df)>10:
slice_size = 4
slice = int(len(opponents_df)/slice_size)
sample = opponents_df[slice:(slice_size-1)*slice].sample(frac=1).iloc[0]
opponent, descriptor = sample["opponent"], sample["descriptor"]
else:
sample = opponents_df.sample(frac=1).iloc[0]
opponent, descriptor = sample["opponent"], sample["descriptor"]
if len(opponents_df) > 1:
# Randomly select a opponent to compare with
sample = opponents_df.sample(frac=1)
comparison_opponent = sample.iloc[0]
if comparison_opponent['opponent'] == opponent and comparison_opponent['descriptor'] == descriptor:
comparison_opponent = sample.iloc[1]
first_df = opponents_df[opponents_df["opponent"]==opponent][opponents_df["descriptor"]==descriptor]
first_string = first_df["opponent"].tolist()[0]+" - "+first_df["descriptor"].tolist()[0]
second_df = comparison_opponent
second_string = second_df["opponent"]+" - "+second_df["descriptor"]
return f"Do you like '{descriptor} - {opponent}' better than '{comparison_opponent['descriptor']} - {comparison_opponent['opponent']}'?", first_string, second_string, display_rankings(opponents_df)
else:
return "Add some opponents to start voting!", "", "", display_rankings(opponents_df)
def clean_string(string):
string = string.strip().replace(" "," ").lower()
string = " ".join([x[0].upper()+x[1:] for x in string.split()])
return string
def add_and_compare(descriptor, opponent, opponents_df):
try:
opponents_df = opponents_df[["elo_score", "descriptor", "opponent"]]
except:
opponents_df = pd.DataFrame(columns=['elo_score', 'descriptor', 'opponent'])
if descriptor != "" and opponent != "":
descriptor = clean_string(descriptor)
opponent = clean_string(opponent)
new_opponent = pd.DataFrame({'descriptor': [descriptor], 'opponent': [opponent], 'elo_score': [1000]})
opponents_df = pd.concat([opponents_df, new_opponent], ignore_index=True)
opponents_df.to_csv("opponents_df.csv")
opponents_df = opponents_df[["elo_score", "descriptor", "opponent"]]
return "", "", display_rankings(opponents_df)
# Function to update Elo ratings based on user's choice
def update_ratings_pos(first_string, second_string, opponents_df):
try:
opponents_df = opponents_df[["elo_score", "descriptor", "opponent"]]
except:
opponents_df = pd.DataFrame(columns=['elo_score', 'descriptor', 'opponent'])
if len(opponents_df)==0:
return "Add some opponents to start voting!", "", "", display_rankings(opponents_df)
if first_string != "":
opponents_df["combined"] = opponents_df["opponent"] + " - " + opponents_df["descriptor"]
loser = opponents_df[opponents_df["combined"] == second_string]
winner = opponents_df[opponents_df["combined"] == first_string]
# Update Elo scores
winner_score, loser_score = update_scores(winner['elo_score'].values[0], loser['elo_score'].values[0])
opponents_df.at[winner.index[0], 'elo_score'] = winner_score
opponents_df.at[loser.index[0], 'elo_score'] = loser_score
opponents_df = opponents_df.sort_values(by='elo_score', ascending=False)
opponents_df.to_csv("opponents_df.csv")
if len(opponents_df)>10:
slice_size = 4
slice = int(len(opponents_df)/slice_size)
sample = opponents_df[slice:(slice_size-1)*slice].sample(frac=1).iloc[0]
opponent, descriptor = sample["opponent"], sample["descriptor"]
else:
sample = opponents_df.sample(frac=1).iloc[0]
opponent, descriptor = sample["opponent"], sample["descriptor"]
if len(opponents_df) > 1:
# Randomly select a opponent to compare with
sample = opponents_df.sample(frac=1)
comparison_opponent = sample.iloc[0]
if comparison_opponent['opponent'] == opponent and comparison_opponent['descriptor'] == descriptor:
comparison_opponent = sample.iloc[1]
first_df = opponents_df[opponents_df["opponent"]==opponent][opponents_df["descriptor"]==descriptor]
first_string = first_df["opponent"].tolist()[0]+" - "+first_df["descriptor"].tolist()[0]
second_df = comparison_opponent
second_string = second_df["opponent"]+" - "+second_df["descriptor"]
return f"Do you like '{descriptor} - {opponent}' better than '{comparison_opponent['descriptor']} - {comparison_opponent['opponent']}'?", first_string, second_string, display_rankings(opponents_df)
else:
return "Add some opponents to start voting!", "", "", display_rankings(opponents_df)
# Function to update Elo ratings based on user's choice
def update_ratings_neg(first_string, second_string, opponents_df):
try:
opponents_df = opponents_df[["elo_score", "descriptor", "opponent"]]
except:
opponents_df = pd.DataFrame(columns=['elo_score', 'descriptor', 'opponent'])
if len(opponents_df)==0:
return "Add some opponents to start voting!", "", "", display_rankings(opponents_df)
if first_string != "":
opponents_df["combined"] = opponents_df["opponent"] + " - " + opponents_df["descriptor"]
loser = opponents_df[opponents_df["combined"] == first_string]
winner = opponents_df[opponents_df["combined"] == second_string]
# Update Elo scores
winner_score, loser_score = update_scores(winner['elo_score'].values[0], loser['elo_score'].values[0])
opponents_df.at[winner.index[0], 'elo_score'] = winner_score
opponents_df.at[loser.index[0], 'elo_score'] = loser_score
opponents_df = opponents_df.sort_values(by='elo_score', ascending=False)
opponents_df.to_csv("opponents_df.csv")
if len(opponents_df)>10:
slice_size = 4
slice = int(len(opponents_df)/slice_size)
sample = opponents_df[slice:(slice_size-1)*slice].sample(frac=1).iloc[0]
opponent, descriptor = sample["opponent"], sample["descriptor"]
else:
sample = opponents_df.sample(frac=1).iloc[0]
opponent, descriptor = sample["opponent"], sample["descriptor"]
if len(opponents_df) > 1:
# Randomly select a opponent to compare with
sample = opponents_df.sample(frac=1)
comparison_opponent = sample.iloc[0]
if comparison_opponent['opponent'] == opponent and comparison_opponent['descriptor'] == descriptor:
comparison_opponent = sample.iloc[1]
first_df = opponents_df[opponents_df["opponent"]==opponent][opponents_df["descriptor"]==descriptor]
first_string = first_df["opponent"].tolist()[0]+" - "+first_df["descriptor"].tolist()[0]
second_df = comparison_opponent
second_string = second_df["opponent"]+" - "+second_df["descriptor"]
return f"Do you like '{descriptor} - {opponent}' better than '{comparison_opponent['descriptor']} - {comparison_opponent['opponent']}'?", first_string, second_string, display_rankings(opponents_df)
else:
return "Add some opponents to start voting!", "", "", display_rankings(opponents_df)
def display_rankings(opponents_df=pd.DataFrame(columns=['elo_score', 'descriptor', 'opponent'])):
opponents_df = opponents_df.sort_values(by='elo_score', ascending=False)
opponents_df = opponents_df[["elo_score", "descriptor", "opponent"]]
opponents_df.to_csv("opponents_df.csv")
return opponents_df
def export_csv(opponents_df):
# Function to export DataFrame to CSV
save_df = opponents_df
save_df.to_csv("opponents_df.csv")
return "opponents_df.csv"
def import_csv(file, opponents_df):
if file is not None:
#file_content = file.decode('utf-8')
new_df = pd.read_csv(file)
try:
opponents_df = opponents_df[["elo_score", "descriptor", "opponent"]]
except:
opponents_df = pd.DataFrame(columns=['elo_score', 'descriptor', 'opponent'])
new_df = new_df[["elo_score", "descriptor", "opponent"]]
opponents_df = pd.concat([opponents_df,new_df])
opponents_df = opponents_df.drop_duplicates(subset=['descriptor', 'opponent'])
return opponents_df
# Function to remove a opponent
def remove_opponent(descriptor, opponent, opponents_df):
# Find and remove the opponent from the DataFrame
descriptor = clean_string(descriptor)
opponent = clean_string(opponent)
opponents_df = opponents_df[~((opponents_df["descriptor"] == descriptor) & (opponents_df["opponent"] == opponent))]
return opponents_df[["elo_score", "descriptor", "opponent"]]
def reset_rankings(opponents_df):
opponents_df["elo_score"] = [1000]*len(opponents_df)
opponents_df = opponents_df[["elo_score", "descriptor", "opponent"]]
return display_rankings(opponents_df)
def clear_rankings(opponents_df):
opponents_df = pd.DataFrame(columns=['elo_score', 'descriptor', 'opponent'])
return display_rankings(opponents_df)
# theme='Taithrah/Minimal'
# Gradio interface
theme = gr.themes.Soft(primary_hue="red", secondary_hue="blue")
with gr.Blocks(theme=theme) as app:
gr.Markdown(
"""## Preference-based Elo Ranker
This tool helps you create **accurate rankings** of things based on your personal preferences.
It does this by asking you questions comparing a random pair of your inpys, and then using your
answers to calculate Elo scores for ranking.
"""
)
with gr.Row():
previews_df = pd.DataFrame(columns=['elo_score', 'descriptor', 'opponent'])
previews = gr.DataFrame(value=previews_df, interactive=False, visible=False)
with gr.Column():
gr.Markdown(
"""### Vote to Rank
"""
)
with gr.Row():
compare_output = gr.Textbox("Add some options to start voting!", label="Comparison", interactive=False, scale=3)
with gr.Row():
yes_button = gr.Button("Yes", variant="secondary")
no_button = gr.Button("No", variant="primary")
new_vote = gr.Button("New Vote")
with gr.Row():
with gr.Column():
compare_index_1 = gr.Textbox(label="",interactive=False, visible=False)
with gr.Column():
compare_index_2 = gr.Textbox(label="",interactive=False, visible=False)
with gr.Column():
gr.Markdown(
"""### Rankings
"""
)
opponents_df = pd.DataFrame(columns=['elo_score', 'descriptor', 'opponent'])
rankings = gr.DataFrame(value=opponents_df, interactive=False, headers=["Score","descriptor", "opponent"])
gr.Markdown(
"""### Add Opponents
"""
)
with gr.Row():
descriptor_input = gr.Textbox(label="Type")
opponent_input = gr.Textbox(label="Opponent")
add_button = gr.Button("Add Opponent")
add_button.click(add_and_compare, inputs=[descriptor_input, opponent_input, rankings], outputs=[descriptor_input, opponent_input, rankings])
gr.Markdown(
"""### Remove Opponents
"""
)
with gr.Row():
remove_descriptor_input = gr.Textbox(label="Type")
remove_opponent_input = gr.Textbox(label="Opponent")
remove_button = gr.Button("Remove opponent")
remove_button.click(remove_opponent, inputs=[remove_descriptor_input, remove_opponent_input, rankings], outputs=rankings)
gr.Markdown(
"""### Import and Export Rankings
"""
)
with gr.Row():
# Import CSV file to replace the existing DataFrame
import_button = gr.File(label="Import CSV", file_count="single")
import_button.change(fn=import_csv, inputs=[import_button, rankings], outputs=[rankings])
with gr.Column():
# Export button to download the DataFrame as CSV
export_link = gr.File(label="Download CSV", file_count="single")
export_button = gr.Button("Export as CSV")
export_button.click(fn=export_csv, inputs=[rankings], outputs=export_link)
gr.Markdown("### Reset Data")
with gr.Row():
reset_button = gr.Button("Reset Scores")
reset_button.click(reset_rankings, inputs=[rankings], outputs=rankings)
clear_button = gr.Button("Clear Table", variant="primary")
clear_button.click(clear_rankings, inputs=[rankings], outputs=rankings)
# add_button.click(add_and_compare, inputs=[descriptor_input, opponent_input, rankings], outputs=[descriptor_input, opponent_input, rankings])
yes_button.click(update_ratings_pos, inputs=[compare_index_1, compare_index_2, rankings], outputs=[compare_output, compare_index_1, compare_index_2, rankings])
no_button.click(update_ratings_neg, inputs=[compare_index_1, compare_index_2, rankings], outputs=[compare_output, compare_index_1, compare_index_2, rankings])
new_vote.click(vote_startup, inputs=[rankings],outputs=[compare_output, compare_index_1, compare_index_2, rankings])
app.launch(share=False) |