Spaces:
Runtime error
Runtime error
Commit
·
9eab4dd
1
Parent(s):
6952db2
force cpu usage
Browse files
app.py
CHANGED
@@ -2,6 +2,11 @@ from fastapi import FastAPI
|
|
2 |
from transformers import AutoTokenizer, T5ForConditionalGeneration
|
3 |
import json
|
4 |
import os
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
app = FastAPI()
|
7 |
|
@@ -9,30 +14,35 @@ app = FastAPI()
|
|
9 |
try:
|
10 |
with open("questions.json", "r", encoding="utf-8") as f:
|
11 |
examples = json.load(f)
|
|
|
12 |
except FileNotFoundError:
|
13 |
examples = []
|
|
|
14 |
|
15 |
-
# Função para carregar o modelo e tokenizer
|
16 |
-
def
|
17 |
-
|
18 |
-
tokenizer
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
34 |
|
35 |
def generate_question_from_prompt(theme, difficulty, example_question=None):
|
|
|
36 |
if not model_data or not model_data["tokenizer"] or not model_data["model"]:
|
37 |
return {"question": "Erro: Modelo ou tokenizer não carregado.", "options": [], "answer": "", "explanation": "Por favor, verifique os logs."}
|
38 |
|
@@ -65,7 +75,6 @@ def generate_question_from_prompt(theme, difficulty, example_question=None):
|
|
65 |
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
66 |
outputs = model.generate(**inputs, max_new_tokens=512, temperature=0.7, top_p=0.9)
|
67 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
68 |
-
# Parseia a resposta para extrair os componentes
|
69 |
parts = response.split("Alternativas:")
|
70 |
if len(parts) > 1:
|
71 |
question_part = parts[0].replace("Enunciado clínico:", "").strip()
|
|
|
2 |
from transformers import AutoTokenizer, T5ForConditionalGeneration
|
3 |
import json
|
4 |
import os
|
5 |
+
import logging
|
6 |
+
|
7 |
+
# Configura logging para capturar mais detalhes
|
8 |
+
logging.basicConfig(level=logging.INFO)
|
9 |
+
logger = logging.getLogger(__name__)
|
10 |
|
11 |
app = FastAPI()
|
12 |
|
|
|
14 |
try:
|
15 |
with open("questions.json", "r", encoding="utf-8") as f:
|
16 |
examples = json.load(f)
|
17 |
+
logger.info("questions.json carregado com sucesso.")
|
18 |
except FileNotFoundError:
|
19 |
examples = []
|
20 |
+
logger.warning("questions.json não encontrado, usando lista vazia.")
|
21 |
|
22 |
+
# Função para carregar o modelo e tokenizer sob demanda
|
23 |
+
def get_model():
|
24 |
+
if not hasattr(get_model, "model_data"):
|
25 |
+
logger.info("Carregando modelo e tokenizer pela primeira vez...")
|
26 |
+
try:
|
27 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
28 |
+
"unicamp-dl/ptt5-base-portuguese-vocab",
|
29 |
+
legacy=False,
|
30 |
+
clean_up_tokenization_spaces=True
|
31 |
+
)
|
32 |
+
logger.info("Tokenizer carregado com sucesso.")
|
33 |
+
model = T5ForConditionalGeneration.from_pretrained(
|
34 |
+
"unicamp-dl/ptt5-base-portuguese-vocab",
|
35 |
+
device_map="cpu" # Força uso da CPU
|
36 |
+
)
|
37 |
+
logger.info("Modelo carregado com sucesso.")
|
38 |
+
get_model.model_data = {"tokenizer": tokenizer, "model": model}
|
39 |
+
except Exception as e:
|
40 |
+
logger.error(f"Erro ao carregar modelo ou tokenizer: {e}")
|
41 |
+
get_model.model_data = None
|
42 |
+
return get_model.model_data
|
43 |
|
44 |
def generate_question_from_prompt(theme, difficulty, example_question=None):
|
45 |
+
model_data = get_model()
|
46 |
if not model_data or not model_data["tokenizer"] or not model_data["model"]:
|
47 |
return {"question": "Erro: Modelo ou tokenizer não carregado.", "options": [], "answer": "", "explanation": "Por favor, verifique os logs."}
|
48 |
|
|
|
75 |
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
76 |
outputs = model.generate(**inputs, max_new_tokens=512, temperature=0.7, top_p=0.9)
|
77 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
78 |
parts = response.split("Alternativas:")
|
79 |
if len(parts) > 1:
|
80 |
question_part = parts[0].replace("Enunciado clínico:", "").strip()
|