healthtechbrasil commited on
Commit
0614e7d
·
1 Parent(s): 3879eed

API FastAPI com MedGemma

Browse files
Files changed (3) hide show
  1. app.py +25 -64
  2. index.html +16 -0
  3. questions.json +0 -0
app.py CHANGED
@@ -1,64 +1,25 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
+ from fastapi import FastAPI
2
+ from transformers import pipeline
3
+ import json
4
+
5
+ app = FastAPI()
6
+ medgemma = pipeline("text-generation", model="./fine_tuned_medgemma", tokenizer="./fine_tuned_medgemma")
7
+
8
+ # Carregar JSON como base
9
+ with open("questions.json", "r") as f:
10
+ questions_base = json.load(f)
11
+
12
+ @app.get("/generate")
13
+ async def generate_question(theme: str, difficulty: str):
14
+ prompt = f"Baseado nas questões da USP, gere uma questão de residência médica sobre {theme}, nível {difficulty}, com 4 opções (A, B, C, D) no estilo do JSON fornecido."
15
+ response = medgemma(prompt, max_new_tokens=300, temperature=0.7, top_p=0.95)[0]['generated_text']
16
+ return {"question": response}
17
+
18
+ @app.get("/simulado")
19
+ async def get_simulado(num_questions: int = 5):
20
+ simulado = []
21
+ for _ in range(num_questions):
22
+ prompt = "Gere uma questão no estilo do JSON da USP sobre medicina, nível médio, com 4 opções."
23
+ question = medgemma(prompt, max_new_tokens=300)[0]['generated_text']
24
+ simulado.append({"question": question, "options": ["A)", "B)", "C)", "D)"]}) # Placeholder
25
+ return {"simulado": simulado}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
index.html ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!DOCTYPE html>
2
+ <html lang="pt-br">
3
+ <head><title>Simulado USP</title></head>
4
+ <body>
5
+ <h1>Simulado</h1>
6
+ <button onclick="loadSimulado()">Carregar</button>
7
+ <div id="questions"></div>
8
+ <script>
9
+ async function loadSimulado() {
10
+ const response = await fetch('/simulado?num_questions=5');
11
+ const data = await response.json();
12
+ document.getElementById('questions').innerHTML = data.simulado.map(q => `<p>${q.question}</p><ul><li>A)</li><li>B)</li><li>C)</li><li>D)</li></ul>`).join('');
13
+ }
14
+ </script>
15
+ </body>
16
+ </html>
questions.json ADDED
The diff for this file is too large to render. See raw diff