Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
import random | |
from diffusers import DiffusionPipeline | |
import torch | |
from time import time | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model_repo_id = "stabilityai/sdxl-turbo" | |
# Simplified model loading | |
try: | |
if torch.cuda.is_available(): | |
torch_dtype = torch.float16 | |
pipe = DiffusionPipeline.from_pretrained( | |
model_repo_id, | |
torch_dtype=torch_dtype, | |
variant="fp16", | |
use_safetensors=True | |
).to(device) | |
else: | |
torch_dtype = torch.float32 | |
pipe = DiffusionPipeline.from_pretrained( | |
model_repo_id, | |
torch_dtype=torch_dtype | |
).to(device) | |
except Exception as e: | |
print(f"Error loading model: {e}") | |
raise | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
def infer( | |
prompt, | |
negative_prompt, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
guidance_scale, | |
num_inference_steps, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
try: | |
start_time = time() | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator(device=device).manual_seed(seed) | |
# Generate image | |
image = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator, | |
).images[0] | |
gen_time = time() - start_time | |
return image, seed, f"Generated in {gen_time:.2f}s" | |
except Exception as e: | |
print(f"Error during inference: {e}") | |
return None, seed, f"Error: {str(e)}" | |
examples = [ | |
["Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", 1024, 1024], | |
["An astronaut riding a green horse", 768, 768], | |
["A delicious ceviche cheesecake slice", 896, 896], | |
] | |
css = """ | |
:root { | |
--primary: #6e6af0; | |
--secondary: #f5f5f7; | |
--accent: #f5f5f7; | |
--text: #1e1e1e; | |
--shadow: 0 4px 12px rgba(0, 0, 0, 0.1); | |
} | |
.dark { | |
--primary: #a5a5fc; | |
--secondary: #2d3748; | |
--accent: #4a5568; | |
--text: #f7fafc; | |
--shadow: 0 4px 12px rgba(0, 0, 0, 0.3); | |
} | |
#col-container { | |
margin: 0 auto; | |
max-width: 800px; | |
padding: 20px; | |
} | |
.header { | |
text-align: center; | |
margin-bottom: 20px; | |
} | |
.header h1 { | |
font-size: 2.5rem; | |
font-weight: 700; | |
color: var(--primary); | |
margin-bottom: 10px; | |
} | |
.header p { | |
color: var(--text); | |
opacity: 0.8; | |
} | |
.prompt-container, .result-container, .advanced-settings { | |
background: var(--secondary); | |
border-radius: 12px; | |
padding: 20px; | |
box-shadow: var(--shadow); | |
margin-bottom: 20px; | |
} | |
.advanced-settings .form { | |
display: grid; | |
grid-template-columns: 1fr 1fr; | |
gap: 16px; | |
} | |
.control-row { | |
display: flex; | |
gap: 10px; | |
align-items: center; | |
} | |
.btn-primary { | |
background: var(--primary) !important; | |
border: none !important; | |
color: white !important; | |
} | |
.btn-primary:hover { | |
opacity: 0.9 !important; | |
} | |
.examples { | |
display: grid; | |
grid-template-columns: repeat(auto-fill, minmax(250px, 1fr)); | |
gap: 12px; | |
margin-top: 20px; | |
} | |
.example-prompt { | |
background: var(--secondary); | |
padding: 12px; | |
border-radius: 8px; | |
cursor: pointer; | |
transition: all 0.2s; | |
} | |
.example-prompt:hover { | |
transform: translateY(-2px); | |
box-shadow: var(--shadow); | |
} | |
.theme-toggle { | |
position: absolute; | |
top: 20px; | |
right: 20px; | |
background: var(--secondary); | |
border: none; | |
border-radius: 50%; | |
width: 40px; | |
height: 40px; | |
display: flex; | |
align-items: center; | |
justify-content: center; | |
cursor: pointer; | |
} | |
@media (max-width: 768px) { | |
.advanced-settings .form { | |
grid-template-columns: 1fr; | |
} | |
} | |
""" | |
js = """ | |
function toggleTheme() { | |
const body = document.body; | |
body.classList.toggle('dark'); | |
localStorage.setItem('gradio-theme', body.classList.contains('dark') ? 'dark' : 'light'); | |
} | |
document.addEventListener('DOMContentLoaded', () => { | |
const savedTheme = localStorage.getItem('gradio-theme') || 'light'; | |
if (savedTheme === 'dark') { | |
document.body.classList.add('dark'); | |
} | |
const themeToggle = document.createElement('button'); | |
themeToggle.className = 'theme-toggle'; | |
themeToggle.innerHTML = savedTheme === 'dark' ? '☀️' : '🌙'; | |
themeToggle.onclick = toggleTheme; | |
document.body.appendChild(themeToggle); | |
}); | |
""" | |
with gr.Blocks(css=css, js=js, theme=gr.themes.Soft()) as demo: | |
with gr.Column(elem_id="col-container"): | |
with gr.Column(visible=True) as header: | |
gr.Markdown( | |
""" | |
<div class="header"> | |
<h1>✨ AI Image Generator</h1> | |
<p>Transform your text into stunning images with SDXL Turbo</p> | |
</div> | |
""", | |
elem_classes="header" | |
) | |
with gr.Column(elem_classes="prompt-container"): | |
with gr.Row(): | |
prompt = gr.Textbox( | |
label="", | |
show_label=False, | |
max_lines=2, | |
placeholder="Describe the image you want to generate...", | |
container=False, | |
scale=5 | |
) | |
run_button = gr.Button( | |
"Generate", | |
scale=1, | |
variant="primary", | |
elem_classes="btn-primary" | |
) | |
with gr.Column(elem_classes="result-container"): | |
result = gr.Image( | |
label="Generated Image", | |
show_label=False, | |
height=500 | |
) | |
with gr.Row(): | |
seed_info = gr.Textbox( | |
label="Seed", | |
interactive=False | |
) | |
time_info = gr.Textbox( | |
label="Generation Time", | |
interactive=False | |
) | |
with gr.Accordion("🛠️ Advanced Settings", open=False, elem_classes="advanced-settings"): | |
with gr.Column(elem_classes="form"): | |
with gr.Row(): | |
negative_prompt = gr.Textbox( | |
label="Negative Prompt", | |
max_lines=1, | |
placeholder="What you don't want to see in the image", | |
) | |
with gr.Row(): | |
with gr.Column(): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox( | |
label="Randomize seed", | |
value=True, | |
) | |
with gr.Column(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=0.0, | |
) | |
num_inference_steps = gr.Slider( | |
label="Inference Steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=2, | |
) | |
gr.Markdown("### Example Prompts") | |
with gr.Row(elem_classes="examples"): | |
for example in examples: | |
with gr.Column(min_width=200): | |
gr.Examples( | |
examples=[[example[0], example[1], example[2]]], | |
inputs=[prompt, width, height], | |
label="", | |
examples_per_page=20 | |
) | |
run_button.click( | |
fn=infer, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
guidance_scale, | |
num_inference_steps, | |
], | |
outputs=[result, seed_info, time_info], | |
) | |
prompt.submit( | |
fn=infer, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
guidance_scale, | |
num_inference_steps, | |
], | |
outputs=[result, seed_info, time_info], | |
) | |
if __name__ == "__main__": | |
demo.queue(api_open=False).launch() |