File size: 48,412 Bytes
b1883a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 |
import re
import random
import gradio as gr
import json
import os
from typing import Dict, List, Any
# Try to import AI libraries
try:
import openai
OPENAI_AVAILABLE = True
except ImportError:
OPENAI_AVAILABLE = False
try:
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch
TRANSFORMERS_AVAILABLE = True
except ImportError:
TRANSFORMERS_AVAILABLE = False
# Try to import sentence transformers for semantic search
try:
from sentence_transformers import SentenceTransformer
import numpy as np
SENTENCE_TRANSFORMERS_AVAILABLE = True
except ImportError:
SENTENCE_TRANSFORMERS_AVAILABLE = False
class AgriBot:
def __init__(self):
self.name = "AgriBot"
self.user_name = ""
self.conversation_history = []
self.model_loaded = False
self.generator = None
self.tokenizer = None
self.model = None
self.embedding_model = None
# Load agricultural data from JSON
self.agricultural_data = self.load_agricultural_data()
self.knowledge_base = self.prepare_knowledge_base()
# Initialize embedding model for semantic search
self.init_embedding_model()
def load_agricultural_data(self) -> Dict:
"""Load agricultural data from JSON file"""
try:
json_path = os.path.join(os.path.dirname(__file__), 'agricultural_data.json')
with open(json_path, 'r', encoding='utf-8') as file:
return json.load(file)
except FileNotFoundError:
print("Agricultural data file not found. Using basic data.")
return self.get_fallback_data()
except json.JSONDecodeError:
print("Error reading agricultural data. Using basic data.")
return self.get_fallback_data()
def get_fallback_data(self) -> Dict:
"""Fallback data if JSON file is not available"""
return {
"crops": {
"rice": {
"season": "Kharif (June-November)",
"water_requirement": "High water requirement, flooded fields",
"soil": {"type": "Clay or loamy soil with good water retention"},
"fertilizer": {"npk": "120:60:40 kg/ha"},
"diseases": [{"name": "Blast"}, {"name": "Brown spot"}],
"pests": [{"name": "Stem borer"}, {"name": "Brown planthopper"}],
"market_uses": ["Staple food", "Rice flour"]
}
}
}
def prepare_knowledge_base(self) -> List[Dict]:
"""Prepare searchable knowledge base from agricultural data"""
knowledge_items = []
# Process crops data
for crop_name, crop_data in self.agricultural_data.get('crops', {}).items():
# Basic crop info
knowledge_items.append({
'type': 'crop_info',
'crop': crop_name,
'content': f"{crop_name} cultivation information: Season - {crop_data.get('season', 'N/A')}, "
f"Climate - {crop_data.get('climate', 'N/A')}, "
f"Soil - {crop_data.get('soil', {}).get('type', 'N/A')}, "
f"Water requirement - {crop_data.get('water_requirement', 'N/A')}",
'data': crop_data
})
# Diseases
for disease in crop_data.get('diseases', []):
knowledge_items.append({
'type': 'disease',
'crop': crop_name,
'content': f"{disease.get('name', 'Unknown')} disease in {crop_name}: "
f"Cause - {disease.get('cause', 'N/A')}, "
f"Symptoms - {disease.get('symptoms', 'N/A')}, "
f"Control - {disease.get('control', 'N/A')}",
'data': disease
})
# Pests
for pest in crop_data.get('pests', []):
knowledge_items.append({
'type': 'pest',
'crop': crop_name,
'content': f"{pest.get('name', 'Unknown')} pest in {crop_name}: "
f"Damage - {pest.get('damage', 'N/A')}, "
f"Control - {pest.get('control', 'N/A')}",
'data': pest
})
# Process farming techniques
for technique_name, technique_data in self.agricultural_data.get('farming_techniques', {}).items():
knowledge_items.append({
'type': 'technique',
'content': f"{technique_name}: {technique_data.get('definition', 'N/A')}. "
f"Benefits: {', '.join(technique_data.get('benefits', []))}",
'data': technique_data
})
return knowledge_items
def init_embedding_model(self):
"""Initialize embedding model for semantic search"""
if SENTENCE_TRANSFORMERS_AVAILABLE:
try:
self.embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
# Pre-compute embeddings for knowledge base
self.knowledge_embeddings = self.embedding_model.encode([item['content'] for item in self.knowledge_base])
except Exception as e:
print(f"Failed to load embedding model: {e}")
self.embedding_model = None
else:
self.embedding_model = None
def semantic_search(self, query: str, top_k: int = 3) -> List[Dict]:
"""Perform semantic search on knowledge base"""
if self.embedding_model is None:
return self.fallback_search(query, top_k)
try:
query_embedding = self.embedding_model.encode([query])
similarities = np.dot(query_embedding, self.knowledge_embeddings.T)[0]
top_indices = np.argsort(similarities)[-top_k:][::-1]
results = []
for idx in top_indices:
if similarities[idx] > 0.3: # Threshold for relevance
results.append({
'item': self.knowledge_base[idx],
'score': float(similarities[idx])
})
return results
except Exception as e:
print(f"Semantic search error: {e}")
return self.fallback_search(query, top_k)
def fallback_search(self, query: str, top_k: int = 3) -> List[Dict]:
"""Fallback search using keyword matching"""
query_words = set(query.lower().split())
results = []
for item in self.knowledge_base:
content_words = set(item['content'].lower().split())
overlap = len(query_words.intersection(content_words))
if overlap > 0:
results.append({
'item': item,
'score': overlap / len(query_words)
})
results.sort(key=lambda x: x['score'], reverse=True)
return results[:top_k]
def load_model(self):
"""Load AI model for advanced queries"""
if self.model_loaded:
return True
if TRANSFORMERS_AVAILABLE:
try:
# Use a smaller, more reliable model
model_name = "microsoft/DialoGPT-medium"
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto" if torch.cuda.is_available() else None,
low_cpu_mem_usage=True
)
# Add pad token if not present
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
self.generator = pipeline(
"text-generation",
model=self.model,
tokenizer=self.tokenizer,
device=0 if torch.cuda.is_available() else -1,
return_full_text=False
)
self.model_loaded = True
print("β
AI model loaded successfully!")
return True
except Exception as e:
print(f"β οΈ Could not load AI model: {str(e)}")
return False
else:
print("π§ Install transformers and torch for AI features")
return False
def generate_ai_response(self, query: str, context: str = "") -> str:
"""Generate conversational AI response using agricultural data as knowledge"""
if not self.model_loaded:
if not self.load_model():
return self.generate_openai_style_response(query, context)
try:
# Create a conversational prompt that makes AI process the data
system_prompt = """You are an expert agricultural consultant with years of experience helping farmers.
Your job is to provide helpful, conversational advice based on agricultural knowledge.
Don't just list data - explain it naturally as if you're talking to a farmer.
Give practical recommendations and explain the reasoning behind them."""
user_prompt = f"""Based on this agricultural information: {context}
Please answer this farmer's question in a helpful, conversational way: {query}
Provide practical advice and explain why these recommendations work."""
# Generate response
full_prompt = f"{system_prompt}\n\nUser: {user_prompt}\nAssistant:"
response = self.generator(
full_prompt,
max_new_tokens=200,
do_sample=True,
temperature=0.8,
top_p=0.9,
pad_token_id=self.tokenizer.eos_token_id,
repetition_penalty=1.2,
no_repeat_ngram_size=3
)
if response and len(response) > 0:
generated_text = response[0]["generated_text"]
# Extract only the assistant's response
if "Assistant:" in generated_text:
ai_response = generated_text.split("Assistant:")[-1].strip()
if len(ai_response) > 20:
return ai_response
except Exception as e:
print(f"AI generation error: {e}")
# Fallback to OpenAI-style response
return self.generate_openai_style_response(query, context)
def generate_openai_style_response(self, query: str, context: str) -> str:
"""Generate OpenAI-style conversational response using template"""
query_lower = query.lower()
# Extract key information from context
crop_mentioned = None
for crop in ['wheat', 'rice', 'corn', 'tomato', 'potato']:
if crop in query_lower or crop in context.lower():
crop_mentioned = crop
break
if crop_mentioned:
crop_data = self.agricultural_data.get('crops', {}).get(crop_mentioned, {})
if 'how to' in query_lower or 'grow' in query_lower or 'cultivate' in query_lower:
return self.generate_cultivation_response(crop_mentioned, crop_data, query)
elif 'fertilizer' in query_lower or 'nutrient' in query_lower:
return self.generate_fertilizer_response(crop_mentioned, crop_data)
elif 'disease' in query_lower or 'pest' in query_lower:
return self.generate_pest_disease_response(crop_mentioned, crop_data, query)
elif 'harvest' in query_lower:
return self.generate_harvest_response(crop_mentioned, crop_data)
else:
return self.generate_general_crop_response(crop_mentioned, crop_data, query)
return self.generate_general_farming_response(query, context)
def generate_cultivation_response(self, crop: str, crop_data: dict, query: str) -> str:
"""Generate detailed cultivation guide response"""
season = crop_data.get('season', 'appropriate season')
climate = crop_data.get('climate', 'suitable climate conditions')
soil_info = crop_data.get('soil', {})
soil_type = soil_info.get('type', 'well-prepared soil')
water_req = crop_data.get('water_requirement', 'adequate water')
planting_info = crop_data.get('planting', {})
spacing = planting_info.get('spacing', 'proper spacing')
depth = planting_info.get('depth', 'appropriate depth')
response = f"""Great question about growing {crop}! Let me walk you through the complete cultivation process:
π± **Getting Started:**
{crop.capitalize()} grows best during {season}. You'll want {climate} for optimal growth. The key is starting with {soil_type} - this gives your crop the foundation it needs.
πΎ **Planting Process:**
When planting, maintain {spacing} between plants and sow at {depth}. This spacing is crucial because it allows each plant enough room to develop properly and reduces competition for nutrients.
π§ **Water Management:**
Your {crop} will need {water_req}. The timing of watering is just as important as the amount - too much early on can cause root rot, while too little during grain formation reduces yield.
π **Why This Works:**
These recommendations are based on the plant's natural growth patterns. {crop.capitalize()} has specific nutritional and environmental needs during different growth stages, and following these guidelines maximizes your chances of a successful harvest.
Would you like me to explain any specific part of the cultivation process in more detail?"""
return response
def generate_fertilizer_response(self, crop: str, crop_data: dict) -> str:
"""Generate fertilizer recommendation response"""
fertilizer_info = crop_data.get('fertilizer', {})
npk = fertilizer_info.get('npk', 'balanced NPK')
organic = fertilizer_info.get('organic', 'organic matter')
micronutrients = fertilizer_info.get('micronutrients', 'essential micronutrients')
response = f"""Excellent question about fertilizing {crop}! Proper nutrition is absolutely critical for good yields.
π§ͺ **Primary Nutrition (NPK):**
For {crop}, I recommend {npk} per hectare. Here's why this ratio works:
- **Nitrogen (N)**: Promotes leaf growth and protein development
- **Phosphorus (P)**: Essential for root development and grain formation
- **Potassium (K)**: Improves disease resistance and grain quality
πΏ **Organic Approach:**
Don't forget about {organic} - this improves soil structure and provides slow-release nutrients. Organic matter also feeds beneficial soil microorganisms that help your plants absorb nutrients more efficiently.
β‘ **Micronutrients:**
{crop.capitalize()} also needs {micronutrients}. These might seem minor, but deficiencies can severely limit yield even when NPK levels are adequate.
π‘ **Application Strategy:**
Apply fertilizers in split doses rather than all at once. This prevents nutrient loss and ensures the plant gets nutrition when it needs it most during different growth stages.
**Timing is Everything:**
Early application supports vegetative growth, while later applications during flowering/grain filling stages directly impact your final yield.
Need specific timing recommendations for your growing season?"""
return response
def generate_pest_disease_response(self, crop: str, crop_data: dict, query: str) -> str:
"""Generate pest/disease management response"""
diseases = crop_data.get('diseases', [])
pests = crop_data.get('pests', [])
if 'disease' in query.lower() and diseases:
main_disease = diseases[0] if diseases else {}
disease_name = main_disease.get('name', 'common diseases')
symptoms = main_disease.get('symptoms', 'various symptoms')
control = main_disease.get('control', 'appropriate treatment')
response = f"""I understand your concern about {crop} diseases. {disease_name} is indeed one of the most common issues farmers face.
π **What to Look For:**
{symptoms} - catching this early is crucial for effective management.
π **Treatment Approach:**
{control} is your best bet for control. But remember, prevention is always better than cure.
π‘οΈ **Prevention Strategy:**
- Ensure proper plant spacing for air circulation
- Avoid overhead watering when possible
- Remove and destroy infected plant material immediately
- Practice crop rotation to break disease cycles
πΏ **Integrated Approach:**
Combine chemical treatments with cultural practices for best results. Healthy plants with good nutrition are naturally more resistant to diseases.
The key is regular monitoring - walk your fields weekly and check for early signs. Early detection means easier, cheaper, and more effective treatment."""
elif 'pest' in query.lower() and pests:
main_pest = pests[0] if pests else {}
pest_name = main_pest.get('name', 'common pests')
damage = main_pest.get('damage', 'plant damage')
control = main_pest.get('control', 'pest control measures')
response = f"""Pest management in {crop} is definitely important for protecting your investment. {pest_name} can cause significant {damage} if not managed properly.
π― **Control Strategy:**
{control} - but let's talk about a comprehensive approach.
π **Monitoring:**
Regular field scouting is essential. Check plants weekly, especially during vulnerable growth stages.
πΏ **Integrated Pest Management (IPM):**
1. **Biological control**: Encourage beneficial insects
2. **Cultural practices**: Proper spacing, sanitation
3. **Chemical control**: Only when necessary and at right timing
π‘ **Pro Tip:**
Economic thresholds matter - not every pest requires immediate chemical intervention. Sometimes the cost of treatment exceeds the potential damage.
**Timing is Critical:**
Apply controls when pests are in their most vulnerable stage, not necessarily when you first see them."""
else:
response = f"""For {crop} protection, I recommend an integrated approach combining prevention, monitoring, and targeted treatment.
π‘οΈ **Prevention First:**
- Choose resistant varieties when available
- Maintain proper plant spacing and field sanitation
- Practice crop rotation to break pest/disease cycles
π **Regular Monitoring:**
Weekly field scouting helps catch problems early when they're easier and cheaper to manage.
β‘ **Quick Response:**
When you do identify issues, act quickly but strategically. Consider economic thresholds and use targeted treatments rather than broad-spectrum approaches."""
return response
def generate_harvest_response(self, crop: str, crop_data: dict) -> str:
"""Generate harvest timing and method response"""
harvest_info = crop_data.get('harvesting', {})
timing = harvest_info.get('time', 'appropriate maturity')
indicators = harvest_info.get('indicators', 'visual cues')
method = harvest_info.get('method', 'proper harvesting technique')
yield_expected = crop_data.get('yield', 'good yields')
response = f"""Timing your {crop} harvest correctly is crucial for maximizing both quantity and quality!
β° **Perfect Timing:**
{crop.capitalize()} is typically ready for harvest {timing}. But don't just go by the calendar - the plant will tell you when it's ready.
π **What to Look For:**
{indicators} - these are nature's signals that your crop has reached optimal maturity.
πΎ **Harvesting Method:**
Use {method} for best results. The method you choose affects not just efficiency, but also grain quality and storage life.
π **Expected Results:**
With proper cultivation and timing, you can expect {yield_expected} under good conditions.
π‘ **Pro Tips:**
- Harvest during dry weather when possible
- Early morning harvesting often gives better quality
- Don't delay once the crop is ready - overripe crops can lose quality quickly
- Proper post-harvest handling is just as important as growing
πͺ **Post-Harvest:**
Quick drying and proper storage will protect your hard work and maintain market value.
The key is balancing maximum maturity with optimal quality - harvest too early and you lose yield, too late and you lose quality."""
return response
def generate_general_crop_response(self, crop: str, crop_data: dict, query: str) -> str:
"""Generate general crop information response"""
season = crop_data.get('season', 'growing season')
climate = crop_data.get('climate', 'suitable climate')
uses = crop_data.get('market_uses', ['food production'])
response = f"""Let me share some key insights about {crop} cultivation that might help you.
πΎ **Overview:**
{crop.capitalize()} is typically grown during {season} and thrives in {climate}. It's a valuable crop with multiple uses including {', '.join(uses[:3]) if isinstance(uses, list) else uses}.
π **Key Success Factors:**
1. **Timing**: Planting at the right time for your region
2. **Soil preparation**: Proper soil conditions are fundamental
3. **Water management**: Balanced irrigation throughout the season
4. **Nutrition**: Adequate fertilization for healthy growth
5. **Protection**: Monitoring and managing pests/diseases
πΌ **Market Potential:**
{crop.capitalize()} has good market demand, making it a commercially viable option when grown properly.
π― **My Recommendation:**
Start with small test plots if you're new to {crop} cultivation. This lets you learn the crop's behavior in your specific conditions before scaling up.
Would you like me to dive deeper into any specific aspect of {crop} production?"""
return response
def generate_general_farming_response(self, query: str, context: str) -> str:
"""Generate general farming advice response"""
response = f"""That's a great farming question! Based on current agricultural best practices, here's my advice:
π‘ **General Recommendations:**
Agriculture success comes from understanding your local conditions and adapting proven techniques to your specific situation.
π± **Key Principles:**
- Soil health is the foundation of everything
- Prevention is more cost-effective than treatment
- Regular monitoring helps catch issues early
- Sustainable practices ensure long-term success
π **Next Steps:**
I'd recommend consulting with local agricultural extension services for region-specific advice, as local conditions can significantly impact the best approaches.
Would you like me to elaborate on any specific aspect of this topic?"""
return response
def get_user_name(self, message):
name_patterns = [
r"my name is (\w+)",
r"i'm (\w+)",
r"i am (\w+)",
r"call me (\w+)"
]
for pattern in name_patterns:
match = re.search(pattern, message.lower())
if match:
self.user_name = match.group(1).capitalize()
return f"Nice to meet you, {self.user_name}! How can I assist you with your farming needs?"
return None
def process_message(self, message: str) -> str:
"""Main method to process user messages and generate AI responses"""
# Check if the user is introducing themselves
name_response = self.get_user_name(message)
if name_response:
return name_response
# Search for relevant information in our knowledge base
search_results = self.semantic_search(message, top_k=3)
# Extract context from search results
context = ""
if search_results:
context_parts = []
for result in search_results:
if result['score'] > 0.3: # Relevance threshold
context_parts.append(result['item']['content'])
context = " ".join(context_parts)
# Generate AI response using context
ai_response = self.generate_ai_response(message, context)
if ai_response and len(ai_response.strip()) > 20:
return ai_response
else:
# Final fallback
return self.get_fallback_response(message)
def get_fallback_response(self, query: str) -> str:
"""Provide fallback response when no specific information is found"""
query_lower = query.lower()
if any(word in query_lower for word in ['crop', 'plant', 'grow']):
available_crops = list(self.agricultural_data.get('crops', {}).keys())
return f"""I'd be happy to help you with crop cultivation! I have detailed information about {', '.join(available_crops)}.
These crops have different requirements for soil, climate, and management practices. Each one offers unique opportunities and challenges.
Could you let me know which specific crop you're interested in, or would you like me to recommend crops suitable for your conditions?"""
elif any(word in query_lower for word in ['pest', 'insect', 'bug']):
return """Pest management is crucial for successful farming! Here's my approach:
π― **Integrated Pest Management (IPM):**
The most effective strategy combines multiple approaches rather than relying solely on pesticides.
π **Early Detection:**
Regular field scouting is your best tool - catching problems early makes them much easier and cheaper to manage.
πΏ **Natural Controls:**
Encourage beneficial insects, practice crop rotation, and maintain healthy soil to build natural resistance.
β‘ **Strategic Intervention:**
When chemical control is needed, timing and targeted application are key to effectiveness.
Which specific pest are you dealing with? I can provide more targeted advice."""
elif any(word in query_lower for word in ['disease', 'fungus', 'infection']):
return """Plant diseases can significantly impact your harvest, but they're manageable with the right approach:
π‘οΈ **Prevention Strategy:**
- Choose disease-resistant varieties when available
- Ensure proper plant spacing for air circulation
- Practice crop rotation to break disease cycles
- Maintain soil health for stronger plants
π **Early Recognition:**
Learn to identify early symptoms - quick action is always more effective than waiting.
π **Treatment Options:**
Combine cultural practices with appropriate fungicides or bactericides when necessary.
Which crop disease are you concerned about? I can provide specific guidance."""
else:
return """I'm here to help with all aspects of modern agriculture! Whether you're dealing with:
π± **Crop selection and cultivation**
π **Soil health and fertilization**
π **Pest and disease management**
β
**Weather-related challenges**
π **Yield optimization strategies**
Each farming situation is unique, and the best approach depends on your specific conditions, resources, and goals.
What specific agricultural challenge can I help you tackle today?"""
# Initialize the bot
bot = AgriBot()
def chat_response(message, history):
"""Generate response for Gradio chat interface"""
if not message.strip():
return "Please ask me something about agriculture!"
response = bot.process_message(message)
return response
def greet():
return "Hello! I'm AgriBot, your AI-powered agricultural assistant. I can help you with crop cultivation, pest management, disease control, fertilizers, and general farming advice. What would you like to know about farming today?"
# Create Gradio interface
def create_interface():
with gr.Blocks(
title="πΎ AgriBot - AI Agricultural Assistant",
theme=gr.themes.Base(
primary_hue="green",
secondary_hue="emerald",
neutral_hue="gray",
font=[gr.themes.GoogleFont("Inter"), "Arial", "sans-serif"]
),
css="""
/* Main Container Styling */
.gradio-container {
max-width: 1400px !important;
margin: 0 auto !important;
padding: 20px !important;
background: linear-gradient(135deg, #f0f8f0 0%, #e8f5e8 100%) !important;
}
/* Header Styling */
.main-header {
text-align: center;
padding: 30px 20px;
background: linear-gradient(135deg, #2d5016 0%, #4a7c3c 50%, #5d8b4a 100%);
border-radius: 15px;
margin-bottom: 25px;
color: white !important;
box-shadow: 0 8px 32px rgba(45, 80, 22, 0.3);
border: 1px solid rgba(255, 255, 255, 0.2);
}
.main-header h1 {
color: white !important;
font-size: 2.5rem !important;
font-weight: 700 !important;
margin-bottom: 10px !important;
text-shadow: 2px 2px 4px rgba(0,0,0,0.3) !important;
}
.main-header p {
color: #e8f5e8 !important;
font-size: 1.2rem !important;
margin: 0 !important;
font-weight: 400 !important;
}
/* Feature Cards */
.feature-grid {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
gap: 20px;
margin-bottom: 25px;
}
.feature-card {
background: white !important;
padding: 25px !important;
border-radius: 12px !important;
border-left: 5px solid #4CAF50 !important;
box-shadow: 0 4px 15px rgba(0,0,0,0.1) !important;
transition: transform 0.3s ease, box-shadow 0.3s ease !important;
color: #2d5016 !important;
}
.feature-card:hover {
transform: translateY(-5px) !important;
box-shadow: 0 8px 25px rgba(0,0,0,0.15) !important;
}
.feature-card h3 {
color: #2d5016 !important;
font-size: 1.3rem !important;
font-weight: 600 !important;
margin-bottom: 10px !important;
}
.feature-card p {
color: #4a7c3c !important;
font-size: 1rem !important;
line-height: 1.5 !important;
margin: 0 !important;
}
/* Chat Container */
.chat-container {
background: white !important;
border-radius: 15px !important;
padding: 25px !important;
box-shadow: 0 8px 32px rgba(0,0,0,0.1) !important;
margin-bottom: 20px !important;
}
/* Chatbot Styling */
.chatbot-container {
border: 2px solid #e8f5e8 !important;
border-radius: 12px !important;
background: #fafffe !important;
}
/* Override Gradio's default message styling */
.chatbot .message-wrap {
background: transparent !important;
}
.chatbot .message.user {
background: linear-gradient(135deg, #e3f2fd 0%, #bbdefb 100%) !important;
color: #0d47a1 !important;
border: 1px solid #90caf9 !important;
margin-left: 15% !important;
padding: 15px 20px !important;
border-radius: 15px 15px 5px 15px !important;
box-shadow: 0 2px 8px rgba(13, 71, 161, 0.2) !important;
font-weight: 500 !important;
}
.chatbot .message.bot {
background: linear-gradient(135deg, #e8f5e8 0%, #c8e6c9 100%) !important;
color: #1b5e20 !important;
border: 1px solid #a5d6a7 !important;
margin-right: 15% !important;
padding: 15px 20px !important;
border-radius: 15px 15px 15px 5px !important;
box-shadow: 0 2px 8px rgba(27, 94, 32, 0.2) !important;
font-weight: 500 !important;
}
/* Force text color in chat messages */
.chatbot .message.user * {
color: #0d47a1 !important;
}
.chatbot .message.bot * {
color: #1b5e20 !important;
}
/* Ensure chat text is always visible */
.gradio-chatbot .chatbot .message {
color: inherit !important;
}
.gradio-chatbot .chatbot .message p {
color: inherit !important;
margin: 5px 0 !important;
line-height: 1.5 !important;
}
/* User message styling */
.gradio-chatbot .user {
background: linear-gradient(135deg, #e3f2fd 0%, #bbdefb 100%) !important;
color: #0d47a1 !important;
border: 1px solid #90caf9 !important;
border-radius: 15px 15px 5px 15px !important;
margin-left: 15% !important;
margin-right: 5% !important;
}
/* Bot message styling */
.gradio-chatbot .bot {
background: linear-gradient(135deg, #e8f5e8 0%, #c8e6c9 100%) !important;
color: #1b5e20 !important;
border: 1px solid #a5d6a7 !important;
border-radius: 15px 15px 15px 5px !important;
margin-right: 15% !important;
margin-left: 5% !important;
}
/* Input Styling */
.input-container {
background: white !important;
border-radius: 12px !important;
border: 2px solid #e8f5e8 !important;
padding: 5px !important;
margin-top: 15px !important;
}
.input-container:focus-within {
border-color: #4CAF50 !important;
box-shadow: 0 0 10px rgba(76, 175, 80, 0.2) !important;
}
/* Input text styling */
.input-container textarea,
.input-container input {
color: #2d5016 !important;
background: white !important;
border: none !important;
font-size: 1rem !important;
font-weight: 500 !important;
}
.input-container textarea::placeholder,
.input-container input::placeholder {
color: #6b7280 !important;
opacity: 0.8 !important;
}
/* Override any Gradio input styling */
.gradio-textbox {
background: white !important;
}
.gradio-textbox textarea {
color: #2d5016 !important;
background: white !important;
border: 2px solid #e8f5e8 !important;
border-radius: 8px !important;
padding: 12px !important;
font-size: 1rem !important;
}
.gradio-textbox textarea:focus {
border-color: #4CAF50 !important;
box-shadow: 0 0 10px rgba(76, 175, 80, 0.2) !important;
outline: none !important;
}
/* Button Styling */
.btn-primary {
background: linear-gradient(135deg, #4CAF50 0%, #45a049 100%) !important;
color: white !important;
border: none !important;
border-radius: 8px !important;
padding: 12px 24px !important;
font-weight: 600 !important;
font-size: 1rem !important;
transition: all 0.3s ease !important;
box-shadow: 0 4px 15px rgba(76, 175, 80, 0.3) !important;
}
.btn-primary:hover {
background: linear-gradient(135deg, #45a049 0%, #3d8b40 100%) !important;
transform: translateY(-2px) !important;
box-shadow: 0 6px 20px rgba(76, 175, 80, 0.4) !important;
}
.btn-secondary {
background: linear-gradient(135deg, #6c757d 0%, #5a6268 100%) !important;
color: white !important;
border: none !important;
border-radius: 8px !important;
padding: 12px 24px !important;
font-weight: 600 !important;
transition: all 0.3s ease !important;
}
.btn-secondary:hover {
background: linear-gradient(135deg, #5a6268 0%, #495057 100%) !important;
transform: translateY(-2px) !important;
}
/* Sidebar Styling */
.sidebar {
background: white !important;
border-radius: 15px !important;
padding: 25px !important;
box-shadow: 0 8px 32px rgba(0,0,0,0.1) !important;
height: fit-content !important;
}
.sidebar h3 {
color: #2d5016 !important;
font-size: 1.4rem !important;
font-weight: 600 !important;
margin-bottom: 15px !important;
padding-bottom: 10px !important;
border-bottom: 2px solid #e8f5e8 !important;
}
.sidebar ul {
list-style: none !important;
padding: 0 !important;
margin: 0 !important;
}
.sidebar li {
color: #4a7c3c !important;
padding: 8px 0 !important;
border-bottom: 1px solid #f0f8f0 !important;
font-size: 0.95rem !important;
line-height: 1.4 !important;
}
.sidebar strong {
color: #2d5016 !important;
font-weight: 600 !important;
}
/* Examples Section */
.examples-section {
background: #f8fffe !important;
padding: 20px !important;
border-radius: 10px !important;
margin-top: 20px !important;
border: 1px solid #e8f5e8 !important;
}
/* Footer Styling */
.footer {
text-align: center;
padding: 25px;
background: linear-gradient(135deg, #2d5016 0%, #4a7c3c 100%);
border-radius: 15px;
margin-top: 30px;
color: white !important;
box-shadow: 0 8px 32px rgba(45, 80, 22, 0.3);
}
.footer p {
color: white !important;
margin: 5px 0 !important;
font-size: 1rem !important;
}
.footer strong {
color: #e8f5e8 !important;
font-size: 1.2rem !important;
}
/* Responsive Design */
@media (max-width: 768px) {
.gradio-container {
padding: 10px !important;
}
.main-header {
padding: 20px 15px !important;
}
.main-header h1 {
font-size: 2rem !important;
}
.feature-grid {
grid-template-columns: 1fr !important;
gap: 15px !important;
}
.chat-container, .sidebar {
padding: 15px !important;
}
.feature-card {
padding: 20px !important;
}
}
/* Text Visibility Fixes */
.gr-textbox textarea {
color: #2d5016 !important;
background: white !important;
}
.gr-textbox label {
color: #2d5016 !important;
font-weight: 600 !important;
}
/* Loading Animation */
.loading {
display: inline-block;
width: 20px;
height: 20px;
border: 3px solid #e8f5e8;
border-radius: 50%;
border-top-color: #4CAF50;
animation: spin 1s ease-in-out infinite;
}
@keyframes spin {
to { transform: rotate(360deg); }
}
"""
) as iface:
# Header
gr.HTML("""
<div class="main-header">
<h1>πΎ AgriBot - AI Agricultural Assistant</h1>
<p>Expert farming guidance powered by artificial intelligence and comprehensive agricultural data</p>
</div>
""")
# Feature highlights
gr.HTML("""
<div class="feature-grid">
<div class="feature-card">
<h3>π§ AI-Powered Intelligence</h3>
<p>Advanced AI models process your questions and provide conversational, expert-level agricultural advice tailored to your specific needs.</p>
</div>
<div class="feature-card">
<h3>π± Comprehensive Database</h3>
<p>Extensive knowledge base covering crops, diseases, pests, fertilizers, soil management, and modern farming techniques.</p>
</div>
<div class="feature-card">
<h3>π‘ Professional Guidance</h3>
<p>Get practical, actionable advice from cultivation to harvest, including organic farming, IPM, and sustainable practices.</p>
</div>
</div>
""")
# Main chat area
with gr.Row(equal_height=True):
with gr.Column(scale=7):
gr.HTML('<div class="chat-container">')
chatbot = gr.Chatbot(
value=[(None, greet())],
height=520,
label="π¬ Chat with AgriBot",
show_label=True,
container=True,
bubble_full_width=False,
avatar_images=(
"https://cdn-icons-png.flaticon.com/512/1077/1077012.png", # User
"https://cdn-icons-png.flaticon.com/512/1998/1998667.png" # Bot
),
elem_classes=["chatbot-container"]
)
with gr.Row():
msg = gr.Textbox(
label="πΎ Ask me anything about agriculture...",
placeholder="Example: 'How to grow wheat in clay soil?' or 'Best fertilizer for rice cultivation?' or 'Organic pest control methods?'",
lines=2,
max_lines=4,
scale=4,
elem_classes=["input-container"]
)
with gr.Row():
with gr.Column(scale=2):
submit_btn = gr.Button("π Send Message", variant="primary", elem_classes=["btn-primary"])
with gr.Column(scale=1):
clear_btn = gr.Button("ποΈ Clear Chat", variant="secondary", elem_classes=["btn-secondary"])
gr.HTML('</div>')
with gr.Column(scale=3):
gr.HTML("""
<div class="sidebar">
<h3>πΎ Agricultural Topics</h3>
<ul>
<li><strong>π± Crops:</strong> Rice, Wheat, Corn, Tomato, Potato</li>
<li><strong>π± Cultivation:</strong> Planting, Growing, Harvesting</li>
<li><strong>π§ͺ Nutrition:</strong> NPK Fertilizers, Organic Matter</li>
<li><strong>π‘οΈ Protection:</strong> Pest Control, Disease Management</li>
<li><strong>βοΈ Techniques:</strong> Organic Farming, IPM, Crop Rotation</li>
<li><strong>π Soil:</strong> pH Management, Soil Health</li>
<li><strong>β
Weather:</strong> Climate Adaptation, Seasonal Advice</li>
</ul>
<div class="examples-section">
<h3>π¬ Try These Questions</h3>
<ul>
<li>"How to cultivate wheat in winter?"</li>
<li>"Rice fertilizer requirements and timing"</li>
<li>"Organic methods for tomato pest control"</li>
<li>"Soil preparation for corn planting"</li>
<li>"Disease management in potato crops"</li>
<li>"Best practices for crop rotation"</li>
</ul>
</div>
<div style="margin-top: 20px; padding: 15px; background: #f0f8f0; border-radius: 8px; text-align: center;">
<p style="margin: 0; color: #2d5016; font-weight: 600;">π€ AI Status</p>
<p style="margin: 5px 0 0 0; color: #4a7c3c; font-size: 0.9rem;">Ready to help!</p>
</div>
</div>
""")
# Quick action buttons
gr.HTML("""
<div style="margin: 20px 0; text-align: center;">
<h3 style="color: #2d5016; margin-bottom: 15px;">π Quick Start Topics</h3>
</div>
""")
with gr.Row():
crop_btn = gr.Button("πΎ Crop Cultivation", elem_classes=["btn-primary"])
pest_btn = gr.Button("π Pest Management", elem_classes=["btn-primary"])
disease_btn = gr.Button("π¦ Disease Control", elem_classes=["btn-primary"])
fertilizer_btn = gr.Button("π§ͺ Fertilizers", elem_classes=["btn-primary"])
# Function to handle chat
def respond(message, chat_history):
if not message.strip():
return chat_history, ""
response = bot.process_message(message)
chat_history.append((message, response))
return chat_history, ""
# Function to set quick questions
def set_quick_question(question):
return question
# Event handlers for main chat
submit_btn.click(respond, [msg, chatbot], [chatbot, msg])
msg.submit(respond, [msg, chatbot], [chatbot, msg])
clear_btn.click(lambda: ([(None, greet())], ""), outputs=[chatbot, msg])
# Quick action button handlers
crop_btn.click(
set_quick_question,
inputs=gr.State("Tell me about crop cultivation techniques and best practices for growing healthy crops"),
outputs=msg
)
pest_btn.click(
set_quick_question,
inputs=gr.State("How can I manage pests in my crops using organic and sustainable methods?"),
outputs=msg
)
disease_btn.click(
set_quick_question,
inputs=gr.State("What are effective disease control strategies for common crop diseases?"),
outputs=msg
)
fertilizer_btn.click(
set_quick_question,
inputs=gr.State("What fertilizers should I use for optimal crop growth and when to apply them?"),
outputs=msg
)
# Footer
gr.HTML("""
<div class="footer">
<p><strong>πΎ AgriBot - Your AI Agricultural Consultant</strong></p>
<p>Powered by advanced AI β’ Comprehensive agricultural database β’ Expert farming guidance</p>
<p>Β© 2025 AgriBot | Helping farmers grow smarter with AI technology</p>
</div>
""")
return iface
# Create and launch the interface
if __name__ == "__main__":
interface = create_interface()
interface.launch(
share=True,
server_name="0.0.0.0",
server_port=7860,
show_api=False
)
|