lifeng commited on
Commit
56a2ae1
·
1 Parent(s): 27b9d4c

update code

Browse files
.gitattributes CHANGED
@@ -25,6 +25,7 @@
25
  *.safetensors filter=lfs diff=lfs merge=lfs -text
26
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
  *.tar.* filter=lfs diff=lfs merge=lfs -text
 
28
  *.tflite filter=lfs diff=lfs merge=lfs -text
29
  *.tgz filter=lfs diff=lfs merge=lfs -text
30
  *.wasm filter=lfs diff=lfs merge=lfs -text
@@ -32,4 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
- scale-hf-logo.png filter=lfs diff=lfs merge=lfs -text
 
25
  *.safetensors filter=lfs diff=lfs merge=lfs -text
26
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
  *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
  *.tflite filter=lfs diff=lfs merge=lfs -text
30
  *.tgz filter=lfs diff=lfs merge=lfs -text
31
  *.wasm filter=lfs diff=lfs merge=lfs -text
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ test_imgs/*.png filter=lfs diff=lfs merge=lfs -text
.gitignore DELETED
@@ -1,13 +0,0 @@
1
- auto_evals/
2
- venv/
3
- __pycache__/
4
- .env
5
- .ipynb_checkpoints
6
- *ipynb
7
- .vscode/
8
-
9
- eval-queue/
10
- eval-results/
11
- eval-queue-bk/
12
- eval-results-bk/
13
- logs/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
.pre-commit-config.yaml DELETED
@@ -1,53 +0,0 @@
1
- # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- default_language_version:
16
- python: python3
17
-
18
- ci:
19
- autofix_prs: true
20
- autoupdate_commit_msg: '[pre-commit.ci] pre-commit suggestions'
21
- autoupdate_schedule: quarterly
22
-
23
- repos:
24
- - repo: https://github.com/pre-commit/pre-commit-hooks
25
- rev: v4.3.0
26
- hooks:
27
- - id: check-yaml
28
- - id: check-case-conflict
29
- - id: detect-private-key
30
- - id: check-added-large-files
31
- args: ['--maxkb=1000']
32
- - id: requirements-txt-fixer
33
- - id: end-of-file-fixer
34
- - id: trailing-whitespace
35
-
36
- - repo: https://github.com/PyCQA/isort
37
- rev: 5.12.0
38
- hooks:
39
- - id: isort
40
- name: Format imports
41
-
42
- - repo: https://github.com/psf/black
43
- rev: 22.12.0
44
- hooks:
45
- - id: black
46
- name: Format code
47
- additional_dependencies: ['click==8.0.2']
48
-
49
- - repo: https://github.com/charliermarsh/ruff-pre-commit
50
- # Ruff version.
51
- rev: 'v0.0.267'
52
- hooks:
53
- - id: ruff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Makefile DELETED
@@ -1,13 +0,0 @@
1
- .PHONY: style format
2
-
3
-
4
- style:
5
- python -m black --line-length 119 .
6
- python -m isort .
7
- ruff check --fix .
8
-
9
-
10
- quality:
11
- python -m black --check --line-length 119 .
12
- python -m isort --check-only .
13
- ruff check .
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md CHANGED
@@ -1,46 +1,14 @@
1
  ---
2
- title: Happykala Ghibli
3
- emoji: 🥇
4
- colorFrom: green
5
- colorTo: indigo
6
  sdk: gradio
 
7
  app_file: app.py
8
- pinned: true
9
  license: apache-2.0
10
- short_description: Duplicate this leaderboard to initialize your own!
11
- sdk_version: 5.19.0
12
  ---
13
 
14
- # Start the configuration
15
-
16
- Most of the variables to change for a default leaderboard are in `src/env.py` (replace the path for your leaderboard) and `src/about.py` (for tasks).
17
-
18
- Results files should have the following format and be stored as json files:
19
- ```json
20
- {
21
- "config": {
22
- "model_dtype": "torch.float16", # or torch.bfloat16 or 8bit or 4bit
23
- "model_name": "path of the model on the hub: org/model",
24
- "model_sha": "revision on the hub",
25
- },
26
- "results": {
27
- "task_name": {
28
- "metric_name": score,
29
- },
30
- "task_name2": {
31
- "metric_name": score,
32
- }
33
- }
34
- }
35
- ```
36
-
37
- Request files are created automatically by this tool.
38
-
39
- If you encounter problem on the space, don't hesitate to restart it to remove the create eval-queue, eval-queue-bk, eval-results and eval-results-bk created folder.
40
-
41
- # Code logic for more complex edits
42
-
43
- You'll find
44
- - the main table' columns names and properties in `src/display/utils.py`
45
- - the logic to read all results and request files, then convert them in dataframe lines, in `src/leaderboard/read_evals.py`, and `src/populate.py`
46
- - the logic to allow or filter submissions in `src/submission/submit.py` and `src/submission/check_validity.py`
 
1
  ---
2
+ title: EasyControl Ghibli
3
+ emoji: 🦀
4
+ colorFrom: blue
5
+ colorTo: blue
6
  sdk: gradio
7
+ sdk_version: 5.23.2
8
  app_file: app.py
9
+ pinned: false
10
  license: apache-2.0
11
+ short_description: New Ghibli EasyControl model is now released!!
 
12
  ---
13
 
14
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app.py CHANGED
@@ -1,204 +1,110 @@
 
 
 
 
 
 
 
1
  import gradio as gr
2
- from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
3
- import pandas as pd
4
- from apscheduler.schedulers.background import BackgroundScheduler
5
- from huggingface_hub import snapshot_download
6
 
7
- from src.about import (
8
- CITATION_BUTTON_LABEL,
9
- CITATION_BUTTON_TEXT,
10
- EVALUATION_QUEUE_TEXT,
11
- INTRODUCTION_TEXT,
12
- LLM_BENCHMARKS_TEXT,
13
- TITLE,
14
- )
15
- from src.display.css_html_js import custom_css
16
- from src.display.utils import (
17
- BENCHMARK_COLS,
18
- COLS,
19
- EVAL_COLS,
20
- EVAL_TYPES,
21
- AutoEvalColumn,
22
- ModelType,
23
- fields,
24
- WeightType,
25
- Precision
26
- )
27
- from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
28
- from src.populate import get_evaluation_queue_df, get_leaderboard_df
29
- from src.submission.submit import add_new_eval
30
-
31
-
32
- def restart_space():
33
- API.restart_space(repo_id=REPO_ID)
34
-
35
- ### Space initialisation
36
- try:
37
- print(EVAL_REQUESTS_PATH)
38
- snapshot_download(
39
- repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
40
- )
41
- except Exception:
42
- restart_space()
43
- try:
44
- print(EVAL_RESULTS_PATH)
45
- snapshot_download(
46
- repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
47
- )
48
- except Exception:
49
- restart_space()
50
-
51
-
52
- LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
53
-
54
- (
55
- finished_eval_queue_df,
56
- running_eval_queue_df,
57
- pending_eval_queue_df,
58
- ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
59
-
60
- def init_leaderboard(dataframe):
61
- if dataframe is None or dataframe.empty:
62
- raise ValueError("Leaderboard DataFrame is empty or None.")
63
- return Leaderboard(
64
- value=dataframe,
65
- datatype=[c.type for c in fields(AutoEvalColumn)],
66
- select_columns=SelectColumns(
67
- default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
68
- cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
69
- label="Select Columns to Display:",
70
- ),
71
- search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
72
- hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
73
- filter_columns=[
74
- ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
75
- ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
76
- ColumnFilter(
77
- AutoEvalColumn.params.name,
78
- type="slider",
79
- min=0.01,
80
- max=150,
81
- label="Select the number of parameters (B)",
82
- ),
83
- ColumnFilter(
84
- AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
85
- ),
86
- ],
87
- bool_checkboxgroup_label="Hide models",
88
- interactive=False,
89
- )
90
-
91
-
92
- demo = gr.Blocks(css=custom_css)
93
- with demo:
94
- gr.HTML(TITLE)
95
- gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
96
-
97
- with gr.Tabs(elem_classes="tab-buttons") as tabs:
98
- with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
99
- leaderboard = init_leaderboard(LEADERBOARD_DF)
100
-
101
- with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
102
- gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
103
-
104
- with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
105
  with gr.Column():
106
- with gr.Row():
107
- gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
108
-
109
- with gr.Column():
110
- with gr.Accordion(
111
- f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
112
- open=False,
113
- ):
114
- with gr.Row():
115
- finished_eval_table = gr.components.Dataframe(
116
- value=finished_eval_queue_df,
117
- headers=EVAL_COLS,
118
- datatype=EVAL_TYPES,
119
- row_count=5,
120
- )
121
- with gr.Accordion(
122
- f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
123
- open=False,
124
- ):
125
- with gr.Row():
126
- running_eval_table = gr.components.Dataframe(
127
- value=running_eval_queue_df,
128
- headers=EVAL_COLS,
129
- datatype=EVAL_TYPES,
130
- row_count=5,
131
- )
132
-
133
- with gr.Accordion(
134
- f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
135
- open=False,
136
- ):
137
- with gr.Row():
138
- pending_eval_table = gr.components.Dataframe(
139
- value=pending_eval_queue_df,
140
- headers=EVAL_COLS,
141
- datatype=EVAL_TYPES,
142
- row_count=5,
143
- )
144
- with gr.Row():
145
- gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
146
-
147
- with gr.Row():
148
- with gr.Column():
149
- model_name_textbox = gr.Textbox(label="Model name")
150
- revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
151
- model_type = gr.Dropdown(
152
- choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
153
- label="Model type",
154
- multiselect=False,
155
- value=None,
156
- interactive=True,
157
- )
158
-
159
- with gr.Column():
160
- precision = gr.Dropdown(
161
- choices=[i.value.name for i in Precision if i != Precision.Unknown],
162
- label="Precision",
163
- multiselect=False,
164
- value="float16",
165
- interactive=True,
166
- )
167
- weight_type = gr.Dropdown(
168
- choices=[i.value.name for i in WeightType],
169
- label="Weights type",
170
- multiselect=False,
171
- value="Original",
172
- interactive=True,
173
- )
174
- base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
175
-
176
- submit_button = gr.Button("Submit Eval")
177
- submission_result = gr.Markdown()
178
- submit_button.click(
179
- add_new_eval,
180
- [
181
- model_name_textbox,
182
- base_model_name_textbox,
183
- revision_name_textbox,
184
- precision,
185
- weight_type,
186
- model_type,
187
- ],
188
- submission_result,
189
- )
190
-
191
- with gr.Row():
192
- with gr.Accordion("📙 Citation", open=False):
193
- citation_button = gr.Textbox(
194
- value=CITATION_BUTTON_TEXT,
195
- label=CITATION_BUTTON_LABEL,
196
- lines=20,
197
- elem_id="citation-button",
198
- show_copy_button=True,
199
- )
200
 
201
- scheduler = BackgroundScheduler()
202
- scheduler.add_job(restart_space, "interval", seconds=1800)
203
- scheduler.start()
204
- demo.queue(default_concurrency_limit=40).launch()
 
1
+ import spaces
2
+ import os
3
+ import json
4
+ import time
5
+ import torch
6
+ from PIL import Image
7
+ from tqdm import tqdm
8
  import gradio as gr
 
 
 
 
9
 
10
+ from safetensors.torch import save_file
11
+ from src.pipeline import FluxPipeline
12
+ from src.transformer_flux import FluxTransformer2DModel
13
+ from src.lora_helper import set_single_lora, set_multi_lora, unset_lora
14
+
15
+ # Initialize the image processor
16
+ base_path = "black-forest-labs/FLUX.1-dev"
17
+ lora_base_path = "./models"
18
+
19
+
20
+ pipe = FluxPipeline.from_pretrained(base_path, torch_dtype=torch.bfloat16)
21
+ transformer = FluxTransformer2DModel.from_pretrained(base_path, subfolder="transformer", torch_dtype=torch.bfloat16)
22
+ pipe.transformer = transformer
23
+ pipe.to("cuda")
24
+
25
+ def clear_cache(transformer):
26
+ for name, attn_processor in transformer.attn_processors.items():
27
+ attn_processor.bank_kv.clear()
28
+
29
+ # Define the Gradio interface
30
+ @spaces.GPU()
31
+ def single_condition_generate_image(prompt, spatial_img, height, width, seed, control_type):
32
+ # Set the control type
33
+ if control_type == "Ghibli":
34
+ lora_path = os.path.join(lora_base_path, "Ghibli.safetensors")
35
+ set_single_lora(pipe.transformer, lora_path, lora_weights=[1], cond_size=512)
36
+
37
+ # Process the image
38
+ spatial_imgs = [spatial_img] if spatial_img else []
39
+ image = pipe(
40
+ prompt,
41
+ height=int(height),
42
+ width=int(width),
43
+ guidance_scale=3.5,
44
+ num_inference_steps=25,
45
+ max_sequence_length=512,
46
+ generator=torch.Generator("cpu").manual_seed(seed),
47
+ subject_images=[],
48
+ spatial_images=spatial_imgs,
49
+ cond_size=512,
50
+ ).images[0]
51
+ clear_cache(pipe.transformer)
52
+ return image
53
+
54
+ # Define the Gradio interface components
55
+ control_types = ["Ghibli"]
56
+
57
+ # Example data
58
+ single_examples = [
59
+ ["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/00.png"), 680, 1024, 5, "Ghibli"],
60
+ ["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/02.png"), 560, 1024, 42, "Ghibli"],
61
+ ["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/03.png"), 568, 1024, 1, "Ghibli"],
62
+ ["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/04.png"), 768, 672, 1, "Ghibli"],
63
+ ["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/06.png"), 896, 1024, 1, "Ghibli"],
64
+ ["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/07.png"), 528, 800, 1, "Ghibli"],
65
+ ["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/08.png"), 696, 1024, 1, "Ghibli"],
66
+ ["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/09.png"), 896, 1024, 1, "Ghibli"],
67
+ ]
68
+
69
+
70
+ # Create the Gradio Blocks interface
71
+ with gr.Blocks() as demo:
72
+ gr.Markdown("# Ghibli Studio Control Image Generation with EasyControl")
73
+ gr.Markdown("The model is trained on **only 100 real Asian faces** paired with **GPT-4o-generated Ghibli-style counterparts**, and it preserves facial features while applying the iconic anime aesthetic.")
74
+ gr.Markdown("Generate images using EasyControl with Ghibli control LoRAs.(Due to hardware constraints, only low-resolution images can be generated. For high-resolution (1024+), please set up your own environment.)")
75
+
76
+ gr.Markdown("**[Attention!!]**:The recommended prompts for using Ghibli Control LoRA should include the trigger words: `Ghibli Studio style, Charming hand-drawn anime-style illustration`")
77
+ # gr.Markdown("😊😊If you like this demo, please give us a star (github: [EasyControl](https://github.com/Xiaojiu-z/EasyControl))")
78
+
79
+ with gr.Tab("Ghibli Condition Generation"):
80
+ with gr.Row():
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81
  with gr.Column():
82
+ prompt = gr.Textbox(label="Prompt", value="Ghibli Studio style, Charming hand-drawn anime-style illustration")
83
+ spatial_img = gr.Image(label="Ghibli Image", type="pil") # 上传图像文件
84
+ height = gr.Slider(minimum=256, maximum=1024, step=64, label="Height", value=768)
85
+ width = gr.Slider(minimum=256, maximum=1024, step=64, label="Width", value=768)
86
+ seed = gr.Number(label="Seed", value=42)
87
+ control_type = gr.Dropdown(choices=control_types, label="Control Type")
88
+ single_generate_btn = gr.Button("Generate Image")
89
+ with gr.Column():
90
+ single_output_image = gr.Image(label="Generated Image")
91
+
92
+ # Add examples for Single Condition Generation
93
+ gr.Examples(
94
+ examples=single_examples,
95
+ inputs=[prompt, spatial_img, height, width, seed, control_type],
96
+ outputs=single_output_image,
97
+ fn=single_condition_generate_image,
98
+ cache_examples=False, # 缓存示例结果以加快加载速度
99
+ label="Single Condition Examples"
100
+ )
101
+
102
+ # Link the buttons to the functions
103
+ single_generate_btn.click(
104
+ single_condition_generate_image,
105
+ inputs=[prompt, spatial_img, height, width, seed, control_type],
106
+ outputs=single_output_image
107
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108
 
109
+ # Launch the Gradio app
110
+ demo.queue().launch()
 
 
models/Ghibli.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5204551bd9cb587d659fe1cc50cf524b6339348bc5b1c3ea3b4efe71eb5e753
3
+ size 298895992
pyproject.toml DELETED
@@ -1,13 +0,0 @@
1
- [tool.ruff]
2
- # Enable pycodestyle (`E`) and Pyflakes (`F`) codes by default.
3
- select = ["E", "F"]
4
- ignore = ["E501"] # line too long (black is taking care of this)
5
- line-length = 119
6
- fixable = ["A", "B", "C", "D", "E", "F", "G", "I", "N", "Q", "S", "T", "W", "ANN", "ARG", "BLE", "COM", "DJ", "DTZ", "EM", "ERA", "EXE", "FBT", "ICN", "INP", "ISC", "NPY", "PD", "PGH", "PIE", "PL", "PT", "PTH", "PYI", "RET", "RSE", "RUF", "SIM", "SLF", "TCH", "TID", "TRY", "UP", "YTT"]
7
-
8
- [tool.isort]
9
- profile = "black"
10
- line_length = 119
11
-
12
- [tool.black]
13
- line-length = 119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
requirements.txt CHANGED
@@ -1,16 +1,14 @@
1
- APScheduler
2
- black
3
- datasets
4
- gradio
5
- gradio[oauth]
6
- gradio_leaderboard==0.0.13
7
- gradio_client
8
- huggingface-hub>=0.18.0
9
- matplotlib
10
- numpy
11
- pandas
12
- python-dateutil
13
- tqdm
14
- transformers
15
- tokenizers>=0.15.0
16
- sentencepiece
 
1
+ --extra-index-url https://download.pytorch.org/whl/cu114
2
+ torch
3
+ torchvision
4
+ torchaudio==2.3.1
5
+ diffusers==0.32.2
6
+ easydict==1.13
7
+ einops==0.8.1
8
+ peft==0.14.0
9
+ pillow==11.0.0
10
+ protobuf==5.29.3
11
+ requests==2.32.3
12
+ safetensors==0.5.2
13
+ sentencepiece==0.2.0
14
+ transformers==4.49.0
 
 
src/__init__.py ADDED
File without changes
src/about.py DELETED
@@ -1,72 +0,0 @@
1
- from dataclasses import dataclass
2
- from enum import Enum
3
-
4
- @dataclass
5
- class Task:
6
- benchmark: str
7
- metric: str
8
- col_name: str
9
-
10
-
11
- # Select your tasks here
12
- # ---------------------------------------------------
13
- class Tasks(Enum):
14
- # task_key in the json file, metric_key in the json file, name to display in the leaderboard
15
- task0 = Task("anli_r1", "acc", "ANLI")
16
- task1 = Task("logiqa", "acc_norm", "LogiQA")
17
-
18
- NUM_FEWSHOT = 0 # Change with your few shot
19
- # ---------------------------------------------------
20
-
21
-
22
-
23
- # Your leaderboard name
24
- TITLE = """<h1 align="center" id="space-title">Demo leaderboard</h1>"""
25
-
26
- # What does your leaderboard evaluate?
27
- INTRODUCTION_TEXT = """
28
- Intro text
29
- """
30
-
31
- # Which evaluations are you running? how can people reproduce what you have?
32
- LLM_BENCHMARKS_TEXT = f"""
33
- ## How it works
34
-
35
- ## Reproducibility
36
- To reproduce our results, here is the commands you can run:
37
-
38
- """
39
-
40
- EVALUATION_QUEUE_TEXT = """
41
- ## Some good practices before submitting a model
42
-
43
- ### 1) Make sure you can load your model and tokenizer using AutoClasses:
44
- ```python
45
- from transformers import AutoConfig, AutoModel, AutoTokenizer
46
- config = AutoConfig.from_pretrained("your model name", revision=revision)
47
- model = AutoModel.from_pretrained("your model name", revision=revision)
48
- tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision)
49
- ```
50
- If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded.
51
-
52
- Note: make sure your model is public!
53
- Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted!
54
-
55
- ### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index)
56
- It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`!
57
-
58
- ### 3) Make sure your model has an open license!
59
- This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model 🤗
60
-
61
- ### 4) Fill up your model card
62
- When we add extra information about models to the leaderboard, it will be automatically taken from the model card
63
-
64
- ## In case of model failure
65
- If your model is displayed in the `FAILED` category, its execution stopped.
66
- Make sure you have followed the above steps first.
67
- If everything is done, check you can launch the EleutherAIHarness on your model locally, using the above command without modifications (you can add `--limit` to limit the number of examples per task).
68
- """
69
-
70
- CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
71
- CITATION_BUTTON_TEXT = r"""
72
- """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/display/css_html_js.py DELETED
@@ -1,105 +0,0 @@
1
- custom_css = """
2
-
3
- .markdown-text {
4
- font-size: 16px !important;
5
- }
6
-
7
- #models-to-add-text {
8
- font-size: 18px !important;
9
- }
10
-
11
- #citation-button span {
12
- font-size: 16px !important;
13
- }
14
-
15
- #citation-button textarea {
16
- font-size: 16px !important;
17
- }
18
-
19
- #citation-button > label > button {
20
- margin: 6px;
21
- transform: scale(1.3);
22
- }
23
-
24
- #leaderboard-table {
25
- margin-top: 15px
26
- }
27
-
28
- #leaderboard-table-lite {
29
- margin-top: 15px
30
- }
31
-
32
- #search-bar-table-box > div:first-child {
33
- background: none;
34
- border: none;
35
- }
36
-
37
- #search-bar {
38
- padding: 0px;
39
- }
40
-
41
- /* Limit the width of the first AutoEvalColumn so that names don't expand too much */
42
- #leaderboard-table td:nth-child(2),
43
- #leaderboard-table th:nth-child(2) {
44
- max-width: 400px;
45
- overflow: auto;
46
- white-space: nowrap;
47
- }
48
-
49
- .tab-buttons button {
50
- font-size: 20px;
51
- }
52
-
53
- #scale-logo {
54
- border-style: none !important;
55
- box-shadow: none;
56
- display: block;
57
- margin-left: auto;
58
- margin-right: auto;
59
- max-width: 600px;
60
- }
61
-
62
- #scale-logo .download {
63
- display: none;
64
- }
65
- #filter_type{
66
- border: 0;
67
- padding-left: 0;
68
- padding-top: 0;
69
- }
70
- #filter_type label {
71
- display: flex;
72
- }
73
- #filter_type label > span{
74
- margin-top: var(--spacing-lg);
75
- margin-right: 0.5em;
76
- }
77
- #filter_type label > .wrap{
78
- width: 103px;
79
- }
80
- #filter_type label > .wrap .wrap-inner{
81
- padding: 2px;
82
- }
83
- #filter_type label > .wrap .wrap-inner input{
84
- width: 1px
85
- }
86
- #filter-columns-type{
87
- border:0;
88
- padding:0.5;
89
- }
90
- #filter-columns-size{
91
- border:0;
92
- padding:0.5;
93
- }
94
- #box-filter > .form{
95
- border: 0
96
- }
97
- """
98
-
99
- get_window_url_params = """
100
- function(url_params) {
101
- const params = new URLSearchParams(window.location.search);
102
- url_params = Object.fromEntries(params);
103
- return url_params;
104
- }
105
- """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/display/formatting.py DELETED
@@ -1,27 +0,0 @@
1
- def model_hyperlink(link, model_name):
2
- return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
3
-
4
-
5
- def make_clickable_model(model_name):
6
- link = f"https://huggingface.co/{model_name}"
7
- return model_hyperlink(link, model_name)
8
-
9
-
10
- def styled_error(error):
11
- return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"
12
-
13
-
14
- def styled_warning(warn):
15
- return f"<p style='color: orange; font-size: 20px; text-align: center;'>{warn}</p>"
16
-
17
-
18
- def styled_message(message):
19
- return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>"
20
-
21
-
22
- def has_no_nan_values(df, columns):
23
- return df[columns].notna().all(axis=1)
24
-
25
-
26
- def has_nan_values(df, columns):
27
- return df[columns].isna().any(axis=1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/display/utils.py DELETED
@@ -1,110 +0,0 @@
1
- from dataclasses import dataclass, make_dataclass
2
- from enum import Enum
3
-
4
- import pandas as pd
5
-
6
- from src.about import Tasks
7
-
8
- def fields(raw_class):
9
- return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
10
-
11
-
12
- # These classes are for user facing column names,
13
- # to avoid having to change them all around the code
14
- # when a modif is needed
15
- @dataclass
16
- class ColumnContent:
17
- name: str
18
- type: str
19
- displayed_by_default: bool
20
- hidden: bool = False
21
- never_hidden: bool = False
22
-
23
- ## Leaderboard columns
24
- auto_eval_column_dict = []
25
- # Init
26
- auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
27
- auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
28
- #Scores
29
- auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
30
- for task in Tasks:
31
- auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
32
- # Model information
33
- auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
34
- auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
35
- auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
36
- auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
37
- auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
38
- auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
39
- auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
40
- auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
41
- auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
42
-
43
- # We use make dataclass to dynamically fill the scores from Tasks
44
- AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
45
-
46
- ## For the queue columns in the submission tab
47
- @dataclass(frozen=True)
48
- class EvalQueueColumn: # Queue column
49
- model = ColumnContent("model", "markdown", True)
50
- revision = ColumnContent("revision", "str", True)
51
- private = ColumnContent("private", "bool", True)
52
- precision = ColumnContent("precision", "str", True)
53
- weight_type = ColumnContent("weight_type", "str", "Original")
54
- status = ColumnContent("status", "str", True)
55
-
56
- ## All the model information that we might need
57
- @dataclass
58
- class ModelDetails:
59
- name: str
60
- display_name: str = ""
61
- symbol: str = "" # emoji
62
-
63
-
64
- class ModelType(Enum):
65
- PT = ModelDetails(name="pretrained", symbol="🟢")
66
- FT = ModelDetails(name="fine-tuned", symbol="🔶")
67
- IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
68
- RL = ModelDetails(name="RL-tuned", symbol="🟦")
69
- Unknown = ModelDetails(name="", symbol="?")
70
-
71
- def to_str(self, separator=" "):
72
- return f"{self.value.symbol}{separator}{self.value.name}"
73
-
74
- @staticmethod
75
- def from_str(type):
76
- if "fine-tuned" in type or "🔶" in type:
77
- return ModelType.FT
78
- if "pretrained" in type or "🟢" in type:
79
- return ModelType.PT
80
- if "RL-tuned" in type or "🟦" in type:
81
- return ModelType.RL
82
- if "instruction-tuned" in type or "⭕" in type:
83
- return ModelType.IFT
84
- return ModelType.Unknown
85
-
86
- class WeightType(Enum):
87
- Adapter = ModelDetails("Adapter")
88
- Original = ModelDetails("Original")
89
- Delta = ModelDetails("Delta")
90
-
91
- class Precision(Enum):
92
- float16 = ModelDetails("float16")
93
- bfloat16 = ModelDetails("bfloat16")
94
- Unknown = ModelDetails("?")
95
-
96
- def from_str(precision):
97
- if precision in ["torch.float16", "float16"]:
98
- return Precision.float16
99
- if precision in ["torch.bfloat16", "bfloat16"]:
100
- return Precision.bfloat16
101
- return Precision.Unknown
102
-
103
- # Column selection
104
- COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
105
-
106
- EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
107
- EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
108
-
109
- BENCHMARK_COLS = [t.value.col_name for t in Tasks]
110
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/envs.py DELETED
@@ -1,25 +0,0 @@
1
- import os
2
-
3
- from huggingface_hub import HfApi
4
-
5
- # Info to change for your repository
6
- # ----------------------------------
7
- TOKEN = os.environ.get("HF_TOKEN") # A read/write token for your org
8
-
9
- OWNER = "demo-leaderboard-backend" # Change to your org - don't forget to create a results and request dataset, with the correct format!
10
- # ----------------------------------
11
-
12
- REPO_ID = f"{OWNER}/leaderboard"
13
- QUEUE_REPO = f"{OWNER}/requests"
14
- RESULTS_REPO = f"{OWNER}/results"
15
-
16
- # If you setup a cache later, just change HF_HOME
17
- CACHE_PATH=os.getenv("HF_HOME", ".")
18
-
19
- # Local caches
20
- EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
21
- EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
22
- EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
23
- EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
24
-
25
- API = HfApi(token=TOKEN)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/layers_cache.py ADDED
@@ -0,0 +1,368 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import inspect
2
+ import math
3
+ from typing import Callable, List, Optional, Tuple, Union
4
+ from einops import rearrange
5
+ import torch
6
+ from torch import nn
7
+ import torch.nn.functional as F
8
+ from torch import Tensor
9
+ from diffusers.models.attention_processor import Attention
10
+
11
+ class LoRALinearLayer(nn.Module):
12
+ def __init__(
13
+ self,
14
+ in_features: int,
15
+ out_features: int,
16
+ rank: int = 4,
17
+ network_alpha: Optional[float] = None,
18
+ device: Optional[Union[torch.device, str]] = None,
19
+ dtype: Optional[torch.dtype] = None,
20
+ cond_width=512,
21
+ cond_height=512,
22
+ number=0,
23
+ n_loras=1
24
+ ):
25
+ super().__init__()
26
+ self.down = nn.Linear(in_features, rank, bias=False, device=device, dtype=dtype)
27
+ self.up = nn.Linear(rank, out_features, bias=False, device=device, dtype=dtype)
28
+ # This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
29
+ # See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
30
+ self.network_alpha = network_alpha
31
+ self.rank = rank
32
+ self.out_features = out_features
33
+ self.in_features = in_features
34
+
35
+ nn.init.normal_(self.down.weight, std=1 / rank)
36
+ nn.init.zeros_(self.up.weight)
37
+
38
+ self.cond_height = cond_height
39
+ self.cond_width = cond_width
40
+ self.number = number
41
+ self.n_loras = n_loras
42
+
43
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
44
+ orig_dtype = hidden_states.dtype
45
+ dtype = self.down.weight.dtype
46
+
47
+ ####
48
+ batch_size = hidden_states.shape[0]
49
+ cond_size = self.cond_width // 8 * self.cond_height // 8 * 16 // 64
50
+ block_size = hidden_states.shape[1] - cond_size * self.n_loras
51
+ shape = (batch_size, hidden_states.shape[1], 3072)
52
+ mask = torch.ones(shape, device=hidden_states.device, dtype=dtype)
53
+ mask[:, :block_size+self.number*cond_size, :] = 0
54
+ mask[:, block_size+(self.number+1)*cond_size:, :] = 0
55
+ hidden_states = mask * hidden_states
56
+ ####
57
+
58
+ down_hidden_states = self.down(hidden_states.to(dtype))
59
+ up_hidden_states = self.up(down_hidden_states)
60
+
61
+ if self.network_alpha is not None:
62
+ up_hidden_states *= self.network_alpha / self.rank
63
+
64
+ return up_hidden_states.to(orig_dtype)
65
+
66
+
67
+ class MultiSingleStreamBlockLoraProcessor(nn.Module):
68
+ def __init__(self, dim: int, ranks=[], lora_weights=[], network_alphas=[], device=None, dtype=None, cond_width=512, cond_height=512, n_loras=1):
69
+ super().__init__()
70
+ # Initialize a list to store the LoRA layers
71
+ self.n_loras = n_loras
72
+ self.cond_width = cond_width
73
+ self.cond_height = cond_height
74
+
75
+ self.q_loras = nn.ModuleList([
76
+ LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
77
+ for i in range(n_loras)
78
+ ])
79
+ self.k_loras = nn.ModuleList([
80
+ LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
81
+ for i in range(n_loras)
82
+ ])
83
+ self.v_loras = nn.ModuleList([
84
+ LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
85
+ for i in range(n_loras)
86
+ ])
87
+ self.lora_weights = lora_weights
88
+ self.bank_attn = None
89
+ self.bank_kv = []
90
+
91
+
92
+ def __call__(self,
93
+ attn: Attention,
94
+ hidden_states: torch.FloatTensor,
95
+ encoder_hidden_states: torch.FloatTensor = None,
96
+ attention_mask: Optional[torch.FloatTensor] = None,
97
+ image_rotary_emb: Optional[torch.Tensor] = None,
98
+ use_cond = False
99
+ ) -> torch.FloatTensor:
100
+
101
+ batch_size, seq_len, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
102
+ scaled_seq_len = hidden_states.shape[1]
103
+ cond_size = self.cond_width // 8 * self.cond_height // 8 * 16 // 64
104
+ block_size = scaled_seq_len - cond_size * self.n_loras
105
+ scaled_cond_size = cond_size
106
+ scaled_block_size = block_size
107
+
108
+ if len(self.bank_kv)== 0:
109
+ cache = True
110
+ else:
111
+ cache = False
112
+
113
+ if cache:
114
+ query = attn.to_q(hidden_states)
115
+ key = attn.to_k(hidden_states)
116
+ value = attn.to_v(hidden_states)
117
+ for i in range(self.n_loras):
118
+ query = query + self.lora_weights[i] * self.q_loras[i](hidden_states)
119
+ key = key + self.lora_weights[i] * self.k_loras[i](hidden_states)
120
+ value = value + self.lora_weights[i] * self.v_loras[i](hidden_states)
121
+
122
+ inner_dim = key.shape[-1]
123
+ head_dim = inner_dim // attn.heads
124
+
125
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
126
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
127
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
128
+
129
+ self.bank_kv.append(key[:, :, scaled_block_size:, :])
130
+ self.bank_kv.append(value[:, :, scaled_block_size:, :])
131
+
132
+ if attn.norm_q is not None:
133
+ query = attn.norm_q(query)
134
+ if attn.norm_k is not None:
135
+ key = attn.norm_k(key)
136
+
137
+ if image_rotary_emb is not None:
138
+ from diffusers.models.embeddings import apply_rotary_emb
139
+ query = apply_rotary_emb(query, image_rotary_emb)
140
+ key = apply_rotary_emb(key, image_rotary_emb)
141
+
142
+ num_cond_blocks = self.n_loras
143
+ mask = torch.ones((scaled_seq_len, scaled_seq_len), device=hidden_states.device)
144
+ mask[ :scaled_block_size, :] = 0 # First block_size row
145
+ for i in range(num_cond_blocks):
146
+ start = i * scaled_cond_size + scaled_block_size
147
+ end = (i + 1) * scaled_cond_size + scaled_block_size
148
+ mask[start:end, start:end] = 0 # Diagonal blocks
149
+ mask = mask * -1e10
150
+ mask = mask.to(query.dtype)
151
+
152
+ hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=mask)
153
+ self.bank_attn = hidden_states[:, :, scaled_block_size:, :]
154
+
155
+ else:
156
+ query = attn.to_q(hidden_states)
157
+ key = attn.to_k(hidden_states)
158
+ value = attn.to_v(hidden_states)
159
+
160
+ inner_dim = query.shape[-1]
161
+ head_dim = inner_dim // attn.heads
162
+
163
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
164
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
165
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
166
+
167
+ key = torch.concat([key[:, :, :scaled_block_size, :], self.bank_kv[0]], dim=-2)
168
+ value = torch.concat([value[:, :, :scaled_block_size, :], self.bank_kv[1]], dim=-2)
169
+
170
+ if attn.norm_q is not None:
171
+ query = attn.norm_q(query)
172
+ if attn.norm_k is not None:
173
+ key = attn.norm_k(key)
174
+
175
+ if image_rotary_emb is not None:
176
+ from diffusers.models.embeddings import apply_rotary_emb
177
+ query = apply_rotary_emb(query, image_rotary_emb)
178
+ key = apply_rotary_emb(key, image_rotary_emb)
179
+
180
+ query = query[:, :, :scaled_block_size, :]
181
+
182
+ hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=None)
183
+ hidden_states = torch.concat([hidden_states, self.bank_attn], dim=-2)
184
+
185
+ hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
186
+ hidden_states = hidden_states.to(query.dtype)
187
+
188
+ cond_hidden_states = hidden_states[:, block_size:,:]
189
+ hidden_states = hidden_states[:, : block_size,:]
190
+
191
+ return hidden_states if not use_cond else (hidden_states, cond_hidden_states)
192
+
193
+
194
+ class MultiDoubleStreamBlockLoraProcessor(nn.Module):
195
+ def __init__(self, dim: int, ranks=[], lora_weights=[], network_alphas=[], device=None, dtype=None, cond_width=512, cond_height=512, n_loras=1):
196
+ super().__init__()
197
+
198
+ # Initialize a list to store the LoRA layers
199
+ self.n_loras = n_loras
200
+ self.cond_width = cond_width
201
+ self.cond_height = cond_height
202
+ self.q_loras = nn.ModuleList([
203
+ LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
204
+ for i in range(n_loras)
205
+ ])
206
+ self.k_loras = nn.ModuleList([
207
+ LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
208
+ for i in range(n_loras)
209
+ ])
210
+ self.v_loras = nn.ModuleList([
211
+ LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
212
+ for i in range(n_loras)
213
+ ])
214
+ self.proj_loras = nn.ModuleList([
215
+ LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
216
+ for i in range(n_loras)
217
+ ])
218
+ self.lora_weights = lora_weights
219
+ self.bank_attn = None
220
+ self.bank_kv = []
221
+
222
+
223
+ def __call__(self,
224
+ attn: Attention,
225
+ hidden_states: torch.FloatTensor,
226
+ encoder_hidden_states: torch.FloatTensor = None,
227
+ attention_mask: Optional[torch.FloatTensor] = None,
228
+ image_rotary_emb: Optional[torch.Tensor] = None,
229
+ use_cond=False,
230
+ ) -> torch.FloatTensor:
231
+
232
+ batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
233
+ cond_size = self.cond_width // 8 * self.cond_height // 8 * 16 // 64
234
+ block_size = hidden_states.shape[1] - cond_size * self.n_loras
235
+ scaled_seq_len = encoder_hidden_states.shape[1] + hidden_states.shape[1]
236
+ scaled_cond_size = cond_size
237
+ scaled_block_size = scaled_seq_len - scaled_cond_size * self.n_loras
238
+
239
+ # `context` projections.
240
+ inner_dim = 3072
241
+ head_dim = inner_dim // attn.heads
242
+ encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
243
+ encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
244
+ encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
245
+
246
+ encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
247
+ batch_size, -1, attn.heads, head_dim
248
+ ).transpose(1, 2)
249
+ encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
250
+ batch_size, -1, attn.heads, head_dim
251
+ ).transpose(1, 2)
252
+ encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
253
+ batch_size, -1, attn.heads, head_dim
254
+ ).transpose(1, 2)
255
+
256
+ if attn.norm_added_q is not None:
257
+ encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
258
+ if attn.norm_added_k is not None:
259
+ encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
260
+
261
+ if len(self.bank_kv)== 0:
262
+ cache = True
263
+ else:
264
+ cache = False
265
+
266
+ if cache:
267
+
268
+ query = attn.to_q(hidden_states)
269
+ key = attn.to_k(hidden_states)
270
+ value = attn.to_v(hidden_states)
271
+ for i in range(self.n_loras):
272
+ query = query + self.lora_weights[i] * self.q_loras[i](hidden_states)
273
+ key = key + self.lora_weights[i] * self.k_loras[i](hidden_states)
274
+ value = value + self.lora_weights[i] * self.v_loras[i](hidden_states)
275
+
276
+ inner_dim = key.shape[-1]
277
+ head_dim = inner_dim // attn.heads
278
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
279
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
280
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
281
+
282
+
283
+ self.bank_kv.append(key[:, :, block_size:, :])
284
+ self.bank_kv.append(value[:, :, block_size:, :])
285
+
286
+ if attn.norm_q is not None:
287
+ query = attn.norm_q(query)
288
+ if attn.norm_k is not None:
289
+ key = attn.norm_k(key)
290
+
291
+ # attention
292
+ query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
293
+ key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
294
+ value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
295
+
296
+ if image_rotary_emb is not None:
297
+ from diffusers.models.embeddings import apply_rotary_emb
298
+ query = apply_rotary_emb(query, image_rotary_emb)
299
+ key = apply_rotary_emb(key, image_rotary_emb)
300
+
301
+ num_cond_blocks = self.n_loras
302
+ mask = torch.ones((scaled_seq_len, scaled_seq_len), device=hidden_states.device)
303
+ mask[ :scaled_block_size, :] = 0 # First block_size row
304
+ for i in range(num_cond_blocks):
305
+ start = i * scaled_cond_size + scaled_block_size
306
+ end = (i + 1) * scaled_cond_size + scaled_block_size
307
+ mask[start:end, start:end] = 0 # Diagonal blocks
308
+ mask = mask * -1e10
309
+ mask = mask.to(query.dtype)
310
+
311
+ hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=mask)
312
+ self.bank_attn = hidden_states[:, :, scaled_block_size:, :]
313
+
314
+ else:
315
+ query = attn.to_q(hidden_states)
316
+ key = attn.to_k(hidden_states)
317
+ value = attn.to_v(hidden_states)
318
+
319
+ inner_dim = query.shape[-1]
320
+ head_dim = inner_dim // attn.heads
321
+
322
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
323
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
324
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
325
+
326
+ key = torch.concat([key[:, :, :block_size, :], self.bank_kv[0]], dim=-2)
327
+ value = torch.concat([value[:, :, :block_size, :], self.bank_kv[1]], dim=-2)
328
+
329
+ if attn.norm_q is not None:
330
+ query = attn.norm_q(query)
331
+ if attn.norm_k is not None:
332
+ key = attn.norm_k(key)
333
+
334
+ # attention
335
+ query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
336
+ key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
337
+ value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
338
+
339
+ if image_rotary_emb is not None:
340
+ from diffusers.models.embeddings import apply_rotary_emb
341
+ query = apply_rotary_emb(query, image_rotary_emb)
342
+ key = apply_rotary_emb(key, image_rotary_emb)
343
+
344
+ query = query[:, :, :scaled_block_size, :]
345
+
346
+ hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=None)
347
+ hidden_states = torch.concat([hidden_states, self.bank_attn], dim=-2)
348
+
349
+ hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
350
+ hidden_states = hidden_states.to(query.dtype)
351
+
352
+ encoder_hidden_states, hidden_states = (
353
+ hidden_states[:, : encoder_hidden_states.shape[1]],
354
+ hidden_states[:, encoder_hidden_states.shape[1] :],
355
+ )
356
+
357
+ # Linear projection (with LoRA weight applied to each proj layer)
358
+ hidden_states = attn.to_out[0](hidden_states)
359
+ for i in range(self.n_loras):
360
+ hidden_states = hidden_states + self.lora_weights[i] * self.proj_loras[i](hidden_states)
361
+ # dropout
362
+ hidden_states = attn.to_out[1](hidden_states)
363
+ encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
364
+
365
+ cond_hidden_states = hidden_states[:, block_size:,:]
366
+ hidden_states = hidden_states[:, :block_size,:]
367
+
368
+ return (hidden_states, encoder_hidden_states, cond_hidden_states) if use_cond else (encoder_hidden_states, hidden_states)
src/leaderboard/read_evals.py DELETED
@@ -1,196 +0,0 @@
1
- import glob
2
- import json
3
- import math
4
- import os
5
- from dataclasses import dataclass
6
-
7
- import dateutil
8
- import numpy as np
9
-
10
- from src.display.formatting import make_clickable_model
11
- from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
12
- from src.submission.check_validity import is_model_on_hub
13
-
14
-
15
- @dataclass
16
- class EvalResult:
17
- """Represents one full evaluation. Built from a combination of the result and request file for a given run.
18
- """
19
- eval_name: str # org_model_precision (uid)
20
- full_model: str # org/model (path on hub)
21
- org: str
22
- model: str
23
- revision: str # commit hash, "" if main
24
- results: dict
25
- precision: Precision = Precision.Unknown
26
- model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
27
- weight_type: WeightType = WeightType.Original # Original or Adapter
28
- architecture: str = "Unknown"
29
- license: str = "?"
30
- likes: int = 0
31
- num_params: int = 0
32
- date: str = "" # submission date of request file
33
- still_on_hub: bool = False
34
-
35
- @classmethod
36
- def init_from_json_file(self, json_filepath):
37
- """Inits the result from the specific model result file"""
38
- with open(json_filepath) as fp:
39
- data = json.load(fp)
40
-
41
- config = data.get("config")
42
-
43
- # Precision
44
- precision = Precision.from_str(config.get("model_dtype"))
45
-
46
- # Get model and org
47
- org_and_model = config.get("model_name", config.get("model_args", None))
48
- org_and_model = org_and_model.split("/", 1)
49
-
50
- if len(org_and_model) == 1:
51
- org = None
52
- model = org_and_model[0]
53
- result_key = f"{model}_{precision.value.name}"
54
- else:
55
- org = org_and_model[0]
56
- model = org_and_model[1]
57
- result_key = f"{org}_{model}_{precision.value.name}"
58
- full_model = "/".join(org_and_model)
59
-
60
- still_on_hub, _, model_config = is_model_on_hub(
61
- full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
62
- )
63
- architecture = "?"
64
- if model_config is not None:
65
- architectures = getattr(model_config, "architectures", None)
66
- if architectures:
67
- architecture = ";".join(architectures)
68
-
69
- # Extract results available in this file (some results are split in several files)
70
- results = {}
71
- for task in Tasks:
72
- task = task.value
73
-
74
- # We average all scores of a given metric (not all metrics are present in all files)
75
- accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
76
- if accs.size == 0 or any([acc is None for acc in accs]):
77
- continue
78
-
79
- mean_acc = np.mean(accs) * 100.0
80
- results[task.benchmark] = mean_acc
81
-
82
- return self(
83
- eval_name=result_key,
84
- full_model=full_model,
85
- org=org,
86
- model=model,
87
- results=results,
88
- precision=precision,
89
- revision= config.get("model_sha", ""),
90
- still_on_hub=still_on_hub,
91
- architecture=architecture
92
- )
93
-
94
- def update_with_request_file(self, requests_path):
95
- """Finds the relevant request file for the current model and updates info with it"""
96
- request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
97
-
98
- try:
99
- with open(request_file, "r") as f:
100
- request = json.load(f)
101
- self.model_type = ModelType.from_str(request.get("model_type", ""))
102
- self.weight_type = WeightType[request.get("weight_type", "Original")]
103
- self.license = request.get("license", "?")
104
- self.likes = request.get("likes", 0)
105
- self.num_params = request.get("params", 0)
106
- self.date = request.get("submitted_time", "")
107
- except Exception:
108
- print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")
109
-
110
- def to_dict(self):
111
- """Converts the Eval Result to a dict compatible with our dataframe display"""
112
- average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
113
- data_dict = {
114
- "eval_name": self.eval_name, # not a column, just a save name,
115
- AutoEvalColumn.precision.name: self.precision.value.name,
116
- AutoEvalColumn.model_type.name: self.model_type.value.name,
117
- AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
118
- AutoEvalColumn.weight_type.name: self.weight_type.value.name,
119
- AutoEvalColumn.architecture.name: self.architecture,
120
- AutoEvalColumn.model.name: make_clickable_model(self.full_model),
121
- AutoEvalColumn.revision.name: self.revision,
122
- AutoEvalColumn.average.name: average,
123
- AutoEvalColumn.license.name: self.license,
124
- AutoEvalColumn.likes.name: self.likes,
125
- AutoEvalColumn.params.name: self.num_params,
126
- AutoEvalColumn.still_on_hub.name: self.still_on_hub,
127
- }
128
-
129
- for task in Tasks:
130
- data_dict[task.value.col_name] = self.results[task.value.benchmark]
131
-
132
- return data_dict
133
-
134
-
135
- def get_request_file_for_model(requests_path, model_name, precision):
136
- """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
137
- request_files = os.path.join(
138
- requests_path,
139
- f"{model_name}_eval_request_*.json",
140
- )
141
- request_files = glob.glob(request_files)
142
-
143
- # Select correct request file (precision)
144
- request_file = ""
145
- request_files = sorted(request_files, reverse=True)
146
- for tmp_request_file in request_files:
147
- with open(tmp_request_file, "r") as f:
148
- req_content = json.load(f)
149
- if (
150
- req_content["status"] in ["FINISHED"]
151
- and req_content["precision"] == precision.split(".")[-1]
152
- ):
153
- request_file = tmp_request_file
154
- return request_file
155
-
156
-
157
- def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
158
- """From the path of the results folder root, extract all needed info for results"""
159
- model_result_filepaths = []
160
-
161
- for root, _, files in os.walk(results_path):
162
- # We should only have json files in model results
163
- if len(files) == 0 or any([not f.endswith(".json") for f in files]):
164
- continue
165
-
166
- # Sort the files by date
167
- try:
168
- files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
169
- except dateutil.parser._parser.ParserError:
170
- files = [files[-1]]
171
-
172
- for file in files:
173
- model_result_filepaths.append(os.path.join(root, file))
174
-
175
- eval_results = {}
176
- for model_result_filepath in model_result_filepaths:
177
- # Creation of result
178
- eval_result = EvalResult.init_from_json_file(model_result_filepath)
179
- eval_result.update_with_request_file(requests_path)
180
-
181
- # Store results of same eval together
182
- eval_name = eval_result.eval_name
183
- if eval_name in eval_results.keys():
184
- eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
185
- else:
186
- eval_results[eval_name] = eval_result
187
-
188
- results = []
189
- for v in eval_results.values():
190
- try:
191
- v.to_dict() # we test if the dict version is complete
192
- results.append(v)
193
- except KeyError: # not all eval values present
194
- continue
195
-
196
- return results
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/lora_helper.py ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from diffusers.models.attention_processor import FluxAttnProcessor2_0
2
+ from safetensors import safe_open
3
+ import re
4
+ import torch
5
+ from .layers_cache import MultiDoubleStreamBlockLoraProcessor, MultiSingleStreamBlockLoraProcessor
6
+
7
+ device = "cuda"
8
+
9
+ def load_safetensors(path):
10
+ tensors = {}
11
+ with safe_open(path, framework="pt", device="cpu") as f:
12
+ for key in f.keys():
13
+ tensors[key] = f.get_tensor(key)
14
+ return tensors
15
+
16
+ def get_lora_rank(checkpoint):
17
+ for k in checkpoint.keys():
18
+ if k.endswith(".down.weight"):
19
+ return checkpoint[k].shape[0]
20
+
21
+ def load_checkpoint(local_path):
22
+ if local_path is not None:
23
+ if '.safetensors' in local_path:
24
+ print(f"Loading .safetensors checkpoint from {local_path}")
25
+ checkpoint = load_safetensors(local_path)
26
+ else:
27
+ print(f"Loading checkpoint from {local_path}")
28
+ checkpoint = torch.load(local_path, map_location='cpu')
29
+ return checkpoint
30
+
31
+ def update_model_with_lora(checkpoint, lora_weights, transformer, cond_size):
32
+ number = len(lora_weights)
33
+ ranks = [get_lora_rank(checkpoint) for _ in range(number)]
34
+ lora_attn_procs = {}
35
+ double_blocks_idx = list(range(19))
36
+ single_blocks_idx = list(range(38))
37
+ for name, attn_processor in transformer.attn_processors.items():
38
+ match = re.search(r'\.(\d+)\.', name)
39
+ if match:
40
+ layer_index = int(match.group(1))
41
+
42
+ if name.startswith("transformer_blocks") and layer_index in double_blocks_idx:
43
+
44
+ lora_state_dicts = {}
45
+ for key, value in checkpoint.items():
46
+ # Match based on the layer index in the key (assuming the key contains layer index)
47
+ if re.search(r'\.(\d+)\.', key):
48
+ checkpoint_layer_index = int(re.search(r'\.(\d+)\.', key).group(1))
49
+ if checkpoint_layer_index == layer_index and key.startswith("transformer_blocks"):
50
+ lora_state_dicts[key] = value
51
+
52
+ lora_attn_procs[name] = MultiDoubleStreamBlockLoraProcessor(
53
+ dim=3072, ranks=ranks, network_alphas=ranks, lora_weights=lora_weights, device=device, dtype=torch.bfloat16, cond_width=cond_size, cond_height=cond_size, n_loras=number
54
+ )
55
+
56
+ # Load the weights from the checkpoint dictionary into the corresponding layers
57
+ for n in range(number):
58
+ lora_attn_procs[name].q_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.q_loras.{n}.down.weight', None)
59
+ lora_attn_procs[name].q_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.q_loras.{n}.up.weight', None)
60
+ lora_attn_procs[name].k_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.k_loras.{n}.down.weight', None)
61
+ lora_attn_procs[name].k_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.k_loras.{n}.up.weight', None)
62
+ lora_attn_procs[name].v_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.v_loras.{n}.down.weight', None)
63
+ lora_attn_procs[name].v_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.v_loras.{n}.up.weight', None)
64
+ lora_attn_procs[name].proj_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.proj_loras.{n}.down.weight', None)
65
+ lora_attn_procs[name].proj_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.proj_loras.{n}.up.weight', None)
66
+ lora_attn_procs[name].to(device)
67
+
68
+ elif name.startswith("single_transformer_blocks") and layer_index in single_blocks_idx:
69
+
70
+ lora_state_dicts = {}
71
+ for key, value in checkpoint.items():
72
+ # Match based on the layer index in the key (assuming the key contains layer index)
73
+ if re.search(r'\.(\d+)\.', key):
74
+ checkpoint_layer_index = int(re.search(r'\.(\d+)\.', key).group(1))
75
+ if checkpoint_layer_index == layer_index and key.startswith("single_transformer_blocks"):
76
+ lora_state_dicts[key] = value
77
+
78
+ lora_attn_procs[name] = MultiSingleStreamBlockLoraProcessor(
79
+ dim=3072, ranks=ranks, network_alphas=ranks, lora_weights=lora_weights, device=device, dtype=torch.bfloat16, cond_width=cond_size, cond_height=cond_size, n_loras=number
80
+ )
81
+ # Load the weights from the checkpoint dictionary into the corresponding layers
82
+ for n in range(number):
83
+ lora_attn_procs[name].q_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.q_loras.{n}.down.weight', None)
84
+ lora_attn_procs[name].q_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.q_loras.{n}.up.weight', None)
85
+ lora_attn_procs[name].k_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.k_loras.{n}.down.weight', None)
86
+ lora_attn_procs[name].k_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.k_loras.{n}.up.weight', None)
87
+ lora_attn_procs[name].v_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.v_loras.{n}.down.weight', None)
88
+ lora_attn_procs[name].v_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.v_loras.{n}.up.weight', None)
89
+ lora_attn_procs[name].to(device)
90
+ else:
91
+ lora_attn_procs[name] = FluxAttnProcessor2_0()
92
+
93
+ transformer.set_attn_processor(lora_attn_procs)
94
+
95
+
96
+ def update_model_with_multi_lora(checkpoints, lora_weights, transformer, cond_size):
97
+ ck_number = len(checkpoints)
98
+ cond_lora_number = [len(ls) for ls in lora_weights]
99
+ cond_number = sum(cond_lora_number)
100
+ ranks = [get_lora_rank(checkpoint) for checkpoint in checkpoints]
101
+ multi_lora_weight = []
102
+ for ls in lora_weights:
103
+ for n in ls:
104
+ multi_lora_weight.append(n)
105
+
106
+ lora_attn_procs = {}
107
+ double_blocks_idx = list(range(19))
108
+ single_blocks_idx = list(range(38))
109
+ for name, attn_processor in transformer.attn_processors.items():
110
+ match = re.search(r'\.(\d+)\.', name)
111
+ if match:
112
+ layer_index = int(match.group(1))
113
+
114
+ if name.startswith("transformer_blocks") and layer_index in double_blocks_idx:
115
+ lora_state_dicts = [{} for _ in range(ck_number)]
116
+ for idx, checkpoint in enumerate(checkpoints):
117
+ for key, value in checkpoint.items():
118
+ # Match based on the layer index in the key (assuming the key contains layer index)
119
+ if re.search(r'\.(\d+)\.', key):
120
+ checkpoint_layer_index = int(re.search(r'\.(\d+)\.', key).group(1))
121
+ if checkpoint_layer_index == layer_index and key.startswith("transformer_blocks"):
122
+ lora_state_dicts[idx][key] = value
123
+
124
+ lora_attn_procs[name] = MultiDoubleStreamBlockLoraProcessor(
125
+ dim=3072, ranks=ranks, network_alphas=ranks, lora_weights=multi_lora_weight, device=device, dtype=torch.bfloat16, cond_width=cond_size, cond_height=cond_size, n_loras=cond_number
126
+ )
127
+
128
+ # Load the weights from the checkpoint dictionary into the corresponding layers
129
+ num = 0
130
+ for idx in range(ck_number):
131
+ for n in range(cond_lora_number[idx]):
132
+ lora_attn_procs[name].q_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.q_loras.{n}.down.weight', None)
133
+ lora_attn_procs[name].q_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.q_loras.{n}.up.weight', None)
134
+ lora_attn_procs[name].k_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.k_loras.{n}.down.weight', None)
135
+ lora_attn_procs[name].k_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.k_loras.{n}.up.weight', None)
136
+ lora_attn_procs[name].v_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.v_loras.{n}.down.weight', None)
137
+ lora_attn_procs[name].v_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.v_loras.{n}.up.weight', None)
138
+ lora_attn_procs[name].proj_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.proj_loras.{n}.down.weight', None)
139
+ lora_attn_procs[name].proj_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.proj_loras.{n}.up.weight', None)
140
+ lora_attn_procs[name].to(device)
141
+ num += 1
142
+
143
+ elif name.startswith("single_transformer_blocks") and layer_index in single_blocks_idx:
144
+
145
+ lora_state_dicts = [{} for _ in range(ck_number)]
146
+ for idx, checkpoint in enumerate(checkpoints):
147
+ for key, value in checkpoint.items():
148
+ # Match based on the layer index in the key (assuming the key contains layer index)
149
+ if re.search(r'\.(\d+)\.', key):
150
+ checkpoint_layer_index = int(re.search(r'\.(\d+)\.', key).group(1))
151
+ if checkpoint_layer_index == layer_index and key.startswith("single_transformer_blocks"):
152
+ lora_state_dicts[idx][key] = value
153
+
154
+ lora_attn_procs[name] = MultiSingleStreamBlockLoraProcessor(
155
+ dim=3072, ranks=ranks, network_alphas=ranks, lora_weights=multi_lora_weight, device=device, dtype=torch.bfloat16, cond_width=cond_size, cond_height=cond_size, n_loras=cond_number
156
+ )
157
+ # Load the weights from the checkpoint dictionary into the corresponding layers
158
+ num = 0
159
+ for idx in range(ck_number):
160
+ for n in range(cond_lora_number[idx]):
161
+ lora_attn_procs[name].q_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.q_loras.{n}.down.weight', None)
162
+ lora_attn_procs[name].q_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.q_loras.{n}.up.weight', None)
163
+ lora_attn_procs[name].k_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.k_loras.{n}.down.weight', None)
164
+ lora_attn_procs[name].k_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.k_loras.{n}.up.weight', None)
165
+ lora_attn_procs[name].v_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.v_loras.{n}.down.weight', None)
166
+ lora_attn_procs[name].v_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.v_loras.{n}.up.weight', None)
167
+ lora_attn_procs[name].to(device)
168
+ num += 1
169
+
170
+ else:
171
+ lora_attn_procs[name] = FluxAttnProcessor2_0()
172
+
173
+ transformer.set_attn_processor(lora_attn_procs)
174
+
175
+
176
+ def set_single_lora(transformer, local_path, lora_weights=[], cond_size=512):
177
+ checkpoint = load_checkpoint(local_path)
178
+ update_model_with_lora(checkpoint, lora_weights, transformer, cond_size)
179
+
180
+ def set_multi_lora(transformer, local_paths, lora_weights=[[]], cond_size=512):
181
+ checkpoints = [load_checkpoint(local_path) for local_path in local_paths]
182
+ update_model_with_multi_lora(checkpoints, lora_weights, transformer, cond_size)
183
+
184
+ def unset_lora(transformer):
185
+ lora_attn_procs = {}
186
+ for name, attn_processor in transformer.attn_processors.items():
187
+ lora_attn_procs[name] = FluxAttnProcessor2_0()
188
+ transformer.set_attn_processor(lora_attn_procs)
189
+
190
+
191
+ '''
192
+ unset_lora(pipe.transformer)
193
+ lora_path = "./lora.safetensors"
194
+ lora_weights = [1, 1]
195
+ set_lora(pipe.transformer, local_path=lora_path, lora_weights=lora_weights, cond_size=512)
196
+ '''
src/pipeline.py ADDED
@@ -0,0 +1,745 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import inspect
2
+ from typing import Any, Callable, Dict, List, Optional, Union
3
+
4
+ import numpy as np
5
+ import torch
6
+ from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
7
+
8
+ from diffusers.image_processor import (VaeImageProcessor)
9
+ from diffusers.loaders import FluxLoraLoaderMixin, FromSingleFileMixin
10
+ from diffusers.models.autoencoders import AutoencoderKL
11
+ from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
12
+ from diffusers.utils import (
13
+ USE_PEFT_BACKEND,
14
+ is_torch_xla_available,
15
+ logging,
16
+ scale_lora_layers,
17
+ unscale_lora_layers,
18
+ )
19
+ from diffusers.utils.torch_utils import randn_tensor
20
+ from diffusers.pipelines.pipeline_utils import DiffusionPipeline
21
+ from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
22
+ from torchvision.transforms.functional import pad
23
+ from .transformer_flux import FluxTransformer2DModel
24
+
25
+ if is_torch_xla_available():
26
+ import torch_xla.core.xla_model as xm
27
+
28
+ XLA_AVAILABLE = True
29
+ else:
30
+ XLA_AVAILABLE = False
31
+
32
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
33
+
34
+ def calculate_shift(
35
+ image_seq_len,
36
+ base_seq_len: int = 256,
37
+ max_seq_len: int = 4096,
38
+ base_shift: float = 0.5,
39
+ max_shift: float = 1.16,
40
+ ):
41
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
42
+ b = base_shift - m * base_seq_len
43
+ mu = image_seq_len * m + b
44
+ return mu
45
+
46
+ def prepare_latent_image_ids_(height, width, device, dtype):
47
+ latent_image_ids = torch.zeros(height//2, width//2, 3, device=device, dtype=dtype)
48
+ latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height//2, device=device)[:, None] # y
49
+ latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width//2, device=device)[None, :] # x
50
+ return latent_image_ids
51
+
52
+ def prepare_latent_subject_ids(height, width, device, dtype):
53
+ latent_image_ids = torch.zeros(height // 2, width // 2, 3, device=device, dtype=dtype)
54
+ latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2, device=device)[:, None]
55
+ latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2, device=device)[None, :]
56
+ latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
57
+ latent_image_ids = latent_image_ids.reshape(
58
+ latent_image_id_height * latent_image_id_width, latent_image_id_channels
59
+ )
60
+ return latent_image_ids.to(device=device, dtype=dtype)
61
+
62
+ def resize_position_encoding(batch_size, original_height, original_width, target_height, target_width, device, dtype):
63
+ latent_image_ids = prepare_latent_image_ids_(original_height, original_width, device, dtype)
64
+ latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
65
+ latent_image_ids = latent_image_ids.reshape(
66
+ latent_image_id_height * latent_image_id_width, latent_image_id_channels
67
+ )
68
+
69
+ scale_h = original_height / target_height
70
+ scale_w = original_width / target_width
71
+ latent_image_ids_resized = torch.zeros(target_height//2, target_width//2, 3, device=device, dtype=dtype)
72
+ latent_image_ids_resized[..., 1] = latent_image_ids_resized[..., 1] + torch.arange(target_height//2, device=device)[:, None] * scale_h
73
+ latent_image_ids_resized[..., 2] = latent_image_ids_resized[..., 2] + torch.arange(target_width//2, device=device)[None, :] * scale_w
74
+
75
+ cond_latent_image_id_height, cond_latent_image_id_width, cond_latent_image_id_channels = latent_image_ids_resized.shape
76
+ cond_latent_image_ids = latent_image_ids_resized.reshape(
77
+ cond_latent_image_id_height * cond_latent_image_id_width, cond_latent_image_id_channels
78
+ )
79
+ return latent_image_ids, cond_latent_image_ids
80
+
81
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
82
+ def retrieve_latents(
83
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
84
+ ):
85
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
86
+ return encoder_output.latent_dist.sample(generator)
87
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
88
+ return encoder_output.latent_dist.mode()
89
+ elif hasattr(encoder_output, "latents"):
90
+ return encoder_output.latents
91
+ else:
92
+ raise AttributeError("Could not access latents of provided encoder_output")
93
+
94
+
95
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
96
+ def retrieve_timesteps(
97
+ scheduler,
98
+ num_inference_steps: Optional[int] = None,
99
+ device: Optional[Union[str, torch.device]] = None,
100
+ timesteps: Optional[List[int]] = None,
101
+ sigmas: Optional[List[float]] = None,
102
+ **kwargs,
103
+ ):
104
+ if timesteps is not None and sigmas is not None:
105
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
106
+ if timesteps is not None:
107
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
108
+ if not accepts_timesteps:
109
+ raise ValueError(
110
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
111
+ f" timestep schedules. Please check whether you are using the correct scheduler."
112
+ )
113
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
114
+ timesteps = scheduler.timesteps
115
+ num_inference_steps = len(timesteps)
116
+ elif sigmas is not None:
117
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
118
+ if not accept_sigmas:
119
+ raise ValueError(
120
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
121
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
122
+ )
123
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
124
+ timesteps = scheduler.timesteps
125
+ num_inference_steps = len(timesteps)
126
+ else:
127
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
128
+ timesteps = scheduler.timesteps
129
+ return timesteps, num_inference_steps
130
+
131
+
132
+ class FluxPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFileMixin):
133
+ def __init__(
134
+ self,
135
+ scheduler: FlowMatchEulerDiscreteScheduler,
136
+ vae: AutoencoderKL,
137
+ text_encoder: CLIPTextModel,
138
+ tokenizer: CLIPTokenizer,
139
+ text_encoder_2: T5EncoderModel,
140
+ tokenizer_2: T5TokenizerFast,
141
+ transformer: FluxTransformer2DModel,
142
+ ):
143
+ super().__init__()
144
+
145
+ self.register_modules(
146
+ vae=vae,
147
+ text_encoder=text_encoder,
148
+ text_encoder_2=text_encoder_2,
149
+ tokenizer=tokenizer,
150
+ tokenizer_2=tokenizer_2,
151
+ transformer=transformer,
152
+ scheduler=scheduler,
153
+ )
154
+ self.vae_scale_factor = (
155
+ 2 ** (len(self.vae.config.block_out_channels)) if hasattr(self, "vae") and self.vae is not None else 16
156
+ )
157
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
158
+ self.tokenizer_max_length = (
159
+ self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
160
+ )
161
+ self.default_sample_size = 64
162
+
163
+ def _get_t5_prompt_embeds(
164
+ self,
165
+ prompt: Union[str, List[str]] = None,
166
+ num_images_per_prompt: int = 1,
167
+ max_sequence_length: int = 512,
168
+ device: Optional[torch.device] = None,
169
+ dtype: Optional[torch.dtype] = None,
170
+ ):
171
+ device = device or self._execution_device
172
+ dtype = dtype or self.text_encoder.dtype
173
+
174
+ prompt = [prompt] if isinstance(prompt, str) else prompt
175
+ batch_size = len(prompt)
176
+
177
+ text_inputs = self.tokenizer_2(
178
+ prompt,
179
+ padding="max_length",
180
+ max_length=max_sequence_length,
181
+ truncation=True,
182
+ return_length=False,
183
+ return_overflowing_tokens=False,
184
+ return_tensors="pt",
185
+ )
186
+ text_input_ids = text_inputs.input_ids
187
+ untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
188
+
189
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
190
+ removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1: -1])
191
+ logger.warning(
192
+ "The following part of your input was truncated because `max_sequence_length` is set to "
193
+ f" {max_sequence_length} tokens: {removed_text}"
194
+ )
195
+
196
+ prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
197
+
198
+ dtype = self.text_encoder_2.dtype
199
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
200
+
201
+ _, seq_len, _ = prompt_embeds.shape
202
+
203
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
204
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
205
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
206
+
207
+ return prompt_embeds
208
+
209
+ def _get_clip_prompt_embeds(
210
+ self,
211
+ prompt: Union[str, List[str]],
212
+ num_images_per_prompt: int = 1,
213
+ device: Optional[torch.device] = None,
214
+ ):
215
+ device = device or self._execution_device
216
+
217
+ prompt = [prompt] if isinstance(prompt, str) else prompt
218
+ batch_size = len(prompt)
219
+
220
+ text_inputs = self.tokenizer(
221
+ prompt,
222
+ padding="max_length",
223
+ max_length=self.tokenizer_max_length,
224
+ truncation=True,
225
+ return_overflowing_tokens=False,
226
+ return_length=False,
227
+ return_tensors="pt",
228
+ )
229
+
230
+ text_input_ids = text_inputs.input_ids
231
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
232
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
233
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1: -1])
234
+ logger.warning(
235
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
236
+ f" {self.tokenizer_max_length} tokens: {removed_text}"
237
+ )
238
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
239
+
240
+ # Use pooled output of CLIPTextModel
241
+ prompt_embeds = prompt_embeds.pooler_output
242
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
243
+
244
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
245
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
246
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
247
+
248
+ return prompt_embeds
249
+
250
+ def encode_prompt(
251
+ self,
252
+ prompt: Union[str, List[str]],
253
+ prompt_2: Union[str, List[str]],
254
+ device: Optional[torch.device] = None,
255
+ num_images_per_prompt: int = 1,
256
+ prompt_embeds: Optional[torch.FloatTensor] = None,
257
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
258
+ max_sequence_length: int = 512,
259
+ lora_scale: Optional[float] = None,
260
+ ):
261
+ device = device or self._execution_device
262
+
263
+ # set lora scale so that monkey patched LoRA
264
+ # function of text encoder can correctly access it
265
+ if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
266
+ self._lora_scale = lora_scale
267
+
268
+ # dynamically adjust the LoRA scale
269
+ if self.text_encoder is not None and USE_PEFT_BACKEND:
270
+ scale_lora_layers(self.text_encoder, lora_scale)
271
+ if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
272
+ scale_lora_layers(self.text_encoder_2, lora_scale)
273
+
274
+ prompt = [prompt] if isinstance(prompt, str) else prompt
275
+
276
+ if prompt_embeds is None:
277
+ prompt_2 = prompt_2 or prompt
278
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
279
+
280
+ # We only use the pooled prompt output from the CLIPTextModel
281
+ pooled_prompt_embeds = self._get_clip_prompt_embeds(
282
+ prompt=prompt,
283
+ device=device,
284
+ num_images_per_prompt=num_images_per_prompt,
285
+ )
286
+ prompt_embeds = self._get_t5_prompt_embeds(
287
+ prompt=prompt_2,
288
+ num_images_per_prompt=num_images_per_prompt,
289
+ max_sequence_length=max_sequence_length,
290
+ device=device,
291
+ )
292
+
293
+ if self.text_encoder is not None:
294
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
295
+ # Retrieve the original scale by scaling back the LoRA layers
296
+ unscale_lora_layers(self.text_encoder, lora_scale)
297
+
298
+ if self.text_encoder_2 is not None:
299
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
300
+ # Retrieve the original scale by scaling back the LoRA layers
301
+ unscale_lora_layers(self.text_encoder_2, lora_scale)
302
+
303
+ dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
304
+ text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
305
+
306
+ return prompt_embeds, pooled_prompt_embeds, text_ids
307
+
308
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_inpaint.StableDiffusion3InpaintPipeline._encode_vae_image
309
+ def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
310
+ if isinstance(generator, list):
311
+ image_latents = [
312
+ retrieve_latents(self.vae.encode(image[i: i + 1]), generator=generator[i])
313
+ for i in range(image.shape[0])
314
+ ]
315
+ image_latents = torch.cat(image_latents, dim=0)
316
+ else:
317
+ image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
318
+
319
+ image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
320
+
321
+ return image_latents
322
+
323
+ def check_inputs(
324
+ self,
325
+ prompt,
326
+ prompt_2,
327
+ height,
328
+ width,
329
+ prompt_embeds=None,
330
+ pooled_prompt_embeds=None,
331
+ callback_on_step_end_tensor_inputs=None,
332
+ max_sequence_length=None,
333
+ ):
334
+ if height % 8 != 0 or width % 8 != 0:
335
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
336
+
337
+ if prompt is not None and prompt_embeds is not None:
338
+ raise ValueError(
339
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
340
+ " only forward one of the two."
341
+ )
342
+ elif prompt_2 is not None and prompt_embeds is not None:
343
+ raise ValueError(
344
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
345
+ " only forward one of the two."
346
+ )
347
+ elif prompt is None and prompt_embeds is None:
348
+ raise ValueError(
349
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
350
+ )
351
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
352
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
353
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
354
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
355
+
356
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
357
+ raise ValueError(
358
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
359
+ )
360
+
361
+ if max_sequence_length is not None and max_sequence_length > 512:
362
+ raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
363
+
364
+ @staticmethod
365
+ def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
366
+ latent_image_ids = torch.zeros(height // 2, width // 2, 3)
367
+ latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
368
+ latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
369
+ latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
370
+ latent_image_ids = latent_image_ids.reshape(
371
+ latent_image_id_height * latent_image_id_width, latent_image_id_channels
372
+ )
373
+ return latent_image_ids.to(device=device, dtype=dtype)
374
+
375
+ @staticmethod
376
+ def _pack_latents(latents, batch_size, num_channels_latents, height, width):
377
+ latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
378
+ latents = latents.permute(0, 2, 4, 1, 3, 5)
379
+ latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
380
+ return latents
381
+
382
+ @staticmethod
383
+ def _unpack_latents(latents, height, width, vae_scale_factor):
384
+ batch_size, num_patches, channels = latents.shape
385
+
386
+ height = height // vae_scale_factor
387
+ width = width // vae_scale_factor
388
+
389
+ latents = latents.view(batch_size, height, width, channels // 4, 2, 2)
390
+ latents = latents.permute(0, 3, 1, 4, 2, 5)
391
+
392
+ latents = latents.reshape(batch_size, channels // (2 * 2), height * 2, width * 2)
393
+
394
+ return latents
395
+
396
+ def enable_vae_slicing(self):
397
+ r"""
398
+ Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
399
+ compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
400
+ """
401
+ self.vae.enable_slicing()
402
+
403
+ def disable_vae_slicing(self):
404
+ r"""
405
+ Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
406
+ computing decoding in one step.
407
+ """
408
+ self.vae.disable_slicing()
409
+
410
+ def enable_vae_tiling(self):
411
+ r"""
412
+ Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
413
+ compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
414
+ processing larger images.
415
+ """
416
+ self.vae.enable_tiling()
417
+
418
+ def disable_vae_tiling(self):
419
+ r"""
420
+ Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
421
+ computing decoding in one step.
422
+ """
423
+ self.vae.disable_tiling()
424
+
425
+ def prepare_latents(
426
+ self,
427
+ batch_size,
428
+ num_channels_latents,
429
+ height,
430
+ width,
431
+ dtype,
432
+ device,
433
+ generator,
434
+ subject_image,
435
+ condition_image,
436
+ latents=None,
437
+ cond_number=1,
438
+ sub_number=1
439
+ ):
440
+ height_cond = 2 * (self.cond_size // self.vae_scale_factor)
441
+ width_cond = 2 * (self.cond_size // self.vae_scale_factor)
442
+ height = 2 * (int(height) // self.vae_scale_factor)
443
+ width = 2 * (int(width) // self.vae_scale_factor)
444
+
445
+ shape = (batch_size, num_channels_latents, height, width) # 1 16 106 80
446
+ noise_latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
447
+ noise_latents = self._pack_latents(noise_latents, batch_size, num_channels_latents, height, width)
448
+ noise_latent_image_ids, cond_latent_image_ids = resize_position_encoding(
449
+ batch_size,
450
+ height,
451
+ width,
452
+ height_cond,
453
+ width_cond,
454
+ device,
455
+ dtype,
456
+ )
457
+
458
+ latents_to_concat = []
459
+ latents_ids_to_concat = [noise_latent_image_ids]
460
+
461
+ # subject
462
+ if subject_image is not None:
463
+ shape_subject = (batch_size, num_channels_latents, height_cond*sub_number, width_cond)
464
+ subject_image = subject_image.to(device=device, dtype=dtype)
465
+ subject_image_latents = self._encode_vae_image(image=subject_image, generator=generator)
466
+ subject_latents = self._pack_latents(subject_image_latents, batch_size, num_channels_latents, height_cond*sub_number, width_cond)
467
+ mask2 = torch.zeros(shape_subject, device=device, dtype=dtype)
468
+ mask2 = self._pack_latents(mask2, batch_size, num_channels_latents, height_cond*sub_number, width_cond)
469
+ latent_subject_ids = prepare_latent_subject_ids(height_cond, width_cond, device, dtype)
470
+ latent_subject_ids[:, 1] += 64 # fixed offset
471
+ subject_latent_image_ids = torch.concat([latent_subject_ids for _ in range(sub_number)], dim=-2)
472
+ latents_to_concat.append(subject_latents)
473
+ latents_ids_to_concat.append(subject_latent_image_ids)
474
+
475
+ # spatial
476
+ if condition_image is not None:
477
+ shape_cond = (batch_size, num_channels_latents, height_cond*cond_number, width_cond)
478
+ condition_image = condition_image.to(device=device, dtype=dtype)
479
+ image_latents = self._encode_vae_image(image=condition_image, generator=generator)
480
+ cond_latents = self._pack_latents(image_latents, batch_size, num_channels_latents, height_cond*cond_number, width_cond)
481
+ mask3 = torch.zeros(shape_cond, device=device, dtype=dtype)
482
+ mask3 = self._pack_latents(mask3, batch_size, num_channels_latents, height_cond*cond_number, width_cond)
483
+ cond_latent_image_ids = cond_latent_image_ids
484
+ cond_latent_image_ids = torch.concat([cond_latent_image_ids for _ in range(cond_number)], dim=-2)
485
+ latents_ids_to_concat.append(cond_latent_image_ids)
486
+ latents_to_concat.append(cond_latents)
487
+
488
+ cond_latents = torch.concat(latents_to_concat, dim=-2)
489
+ latent_image_ids = torch.concat(latents_ids_to_concat, dim=-2)
490
+ return cond_latents, latent_image_ids, noise_latents
491
+
492
+ @property
493
+ def guidance_scale(self):
494
+ return self._guidance_scale
495
+
496
+ @property
497
+ def joint_attention_kwargs(self):
498
+ return self._joint_attention_kwargs
499
+
500
+ @property
501
+ def num_timesteps(self):
502
+ return self._num_timesteps
503
+
504
+ @property
505
+ def interrupt(self):
506
+ return self._interrupt
507
+
508
+ @torch.no_grad()
509
+ def __call__(
510
+ self,
511
+ prompt: Union[str, List[str]] = None,
512
+ prompt_2: Optional[Union[str, List[str]]] = None,
513
+ height: Optional[int] = None,
514
+ width: Optional[int] = None,
515
+ num_inference_steps: int = 28,
516
+ timesteps: List[int] = None,
517
+ guidance_scale: float = 3.5,
518
+ num_images_per_prompt: Optional[int] = 1,
519
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
520
+ latents: Optional[torch.FloatTensor] = None,
521
+ prompt_embeds: Optional[torch.FloatTensor] = None,
522
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
523
+ output_type: Optional[str] = "pil",
524
+ return_dict: bool = True,
525
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
526
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
527
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
528
+ max_sequence_length: int = 512,
529
+ spatial_images=None,
530
+ subject_images=None,
531
+ cond_size=512,
532
+ ):
533
+
534
+ height = height or self.default_sample_size * self.vae_scale_factor
535
+ width = width or self.default_sample_size * self.vae_scale_factor
536
+ self.cond_size = cond_size
537
+
538
+ # 1. Check inputs. Raise error if not correct
539
+ self.check_inputs(
540
+ prompt,
541
+ prompt_2,
542
+ height,
543
+ width,
544
+ prompt_embeds=prompt_embeds,
545
+ pooled_prompt_embeds=pooled_prompt_embeds,
546
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
547
+ max_sequence_length=max_sequence_length,
548
+ )
549
+
550
+ self._guidance_scale = guidance_scale
551
+ self._joint_attention_kwargs = joint_attention_kwargs
552
+ self._interrupt = False
553
+
554
+ cond_number = len(spatial_images)
555
+ sub_number = len(subject_images)
556
+
557
+ if sub_number > 0:
558
+ subject_image_ls = []
559
+ for subject_image in subject_images:
560
+ w, h = subject_image.size[:2]
561
+ scale = self.cond_size / max(h, w)
562
+ new_h, new_w = int(h * scale), int(w * scale)
563
+ subject_image = self.image_processor.preprocess(subject_image, height=new_h, width=new_w)
564
+ subject_image = subject_image.to(dtype=torch.float32)
565
+ pad_h = cond_size - subject_image.shape[-2]
566
+ pad_w = cond_size - subject_image.shape[-1]
567
+ subject_image = pad(
568
+ subject_image,
569
+ padding=(int(pad_w / 2), int(pad_h / 2), int(pad_w / 2), int(pad_h / 2)),
570
+ fill=0
571
+ )
572
+ subject_image_ls.append(subject_image)
573
+ subject_image = torch.concat(subject_image_ls, dim=-2)
574
+ else:
575
+ subject_image = None
576
+
577
+ if cond_number > 0:
578
+ condition_image_ls = []
579
+ for img in spatial_images:
580
+ condition_image = self.image_processor.preprocess(img, height=self.cond_size, width=self.cond_size)
581
+ condition_image = condition_image.to(dtype=torch.float32)
582
+ condition_image_ls.append(condition_image)
583
+ condition_image = torch.concat(condition_image_ls, dim=-2)
584
+ else:
585
+ condition_image = None
586
+
587
+ # 2. Define call parameters
588
+ if prompt is not None and isinstance(prompt, str):
589
+ batch_size = 1
590
+ elif prompt is not None and isinstance(prompt, list):
591
+ batch_size = len(prompt)
592
+ else:
593
+ batch_size = prompt_embeds.shape[0]
594
+
595
+ device = self._execution_device
596
+
597
+ lora_scale = (
598
+ self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
599
+ )
600
+ (
601
+ prompt_embeds,
602
+ pooled_prompt_embeds,
603
+ text_ids,
604
+ ) = self.encode_prompt(
605
+ prompt=prompt,
606
+ prompt_2=prompt_2,
607
+ prompt_embeds=prompt_embeds,
608
+ pooled_prompt_embeds=pooled_prompt_embeds,
609
+ device=device,
610
+ num_images_per_prompt=num_images_per_prompt,
611
+ max_sequence_length=max_sequence_length,
612
+ lora_scale=lora_scale,
613
+ )
614
+
615
+ # 4. Prepare latent variables
616
+ num_channels_latents = self.transformer.config.in_channels // 4 # 16
617
+ cond_latents, latent_image_ids, noise_latents = self.prepare_latents(
618
+ batch_size * num_images_per_prompt,
619
+ num_channels_latents,
620
+ height,
621
+ width,
622
+ prompt_embeds.dtype,
623
+ device,
624
+ generator,
625
+ subject_image,
626
+ condition_image,
627
+ latents,
628
+ cond_number,
629
+ sub_number
630
+ )
631
+ latents = noise_latents
632
+ # 5. Prepare timesteps
633
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
634
+ image_seq_len = latents.shape[1]
635
+ mu = calculate_shift(
636
+ image_seq_len,
637
+ self.scheduler.config.base_image_seq_len,
638
+ self.scheduler.config.max_image_seq_len,
639
+ self.scheduler.config.base_shift,
640
+ self.scheduler.config.max_shift,
641
+ )
642
+ timesteps, num_inference_steps = retrieve_timesteps(
643
+ self.scheduler,
644
+ num_inference_steps,
645
+ device,
646
+ timesteps,
647
+ sigmas,
648
+ mu=mu,
649
+ )
650
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
651
+ self._num_timesteps = len(timesteps)
652
+
653
+ # handle guidance
654
+ if self.transformer.config.guidance_embeds:
655
+ guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
656
+ guidance = guidance.expand(latents.shape[0])
657
+ else:
658
+ guidance = None
659
+
660
+ ## Caching conditions
661
+ # clean the cache
662
+ for name, attn_processor in self.transformer.attn_processors.items():
663
+ attn_processor.bank_kv.clear()
664
+ # cache with warmup latents
665
+ start_idx = latents.shape[1] - 32
666
+ warmup_latents = latents[:, start_idx:, :]
667
+ warmup_latent_ids = latent_image_ids[start_idx:, :]
668
+ t = torch.tensor([timesteps[0]], device=device)
669
+ timestep = t.expand(warmup_latents.shape[0]).to(latents.dtype)
670
+ _ = self.transformer(
671
+ hidden_states=warmup_latents,
672
+ cond_hidden_states=cond_latents,
673
+ timestep=timestep/ 1000,
674
+ guidance=guidance,
675
+ pooled_projections=pooled_prompt_embeds,
676
+ encoder_hidden_states=prompt_embeds,
677
+ txt_ids=text_ids,
678
+ img_ids=warmup_latent_ids,
679
+ joint_attention_kwargs=self.joint_attention_kwargs,
680
+ return_dict=False,
681
+ )[0]
682
+
683
+ # 6. Denoising loop
684
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
685
+ for i, t in enumerate(timesteps):
686
+ if self.interrupt:
687
+ continue
688
+
689
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
690
+ timestep = t.expand(latents.shape[0]).to(latents.dtype)
691
+ noise_pred = self.transformer(
692
+ hidden_states=latents,
693
+ cond_hidden_states=cond_latents,
694
+ timestep=timestep / 1000,
695
+ guidance=guidance,
696
+ pooled_projections=pooled_prompt_embeds,
697
+ encoder_hidden_states=prompt_embeds,
698
+ txt_ids=text_ids,
699
+ img_ids=latent_image_ids,
700
+ joint_attention_kwargs=self.joint_attention_kwargs,
701
+ return_dict=False,
702
+ )[0]
703
+
704
+ # compute the previous noisy sample x_t -> x_t-1
705
+ latents_dtype = latents.dtype
706
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
707
+ latents = latents
708
+
709
+ if latents.dtype != latents_dtype:
710
+ if torch.backends.mps.is_available():
711
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
712
+ latents = latents.to(latents_dtype)
713
+
714
+ if callback_on_step_end is not None:
715
+ callback_kwargs = {}
716
+ for k in callback_on_step_end_tensor_inputs:
717
+ callback_kwargs[k] = locals()[k]
718
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
719
+
720
+ latents = callback_outputs.pop("latents", latents)
721
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
722
+
723
+ # call the callback, if provided
724
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
725
+ progress_bar.update()
726
+
727
+ if XLA_AVAILABLE:
728
+ xm.mark_step()
729
+
730
+ if output_type == "latent":
731
+ image = latents
732
+
733
+ else:
734
+ latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
735
+ latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
736
+ image = self.vae.decode(latents.to(dtype=self.vae.dtype), return_dict=False)[0]
737
+ image = self.image_processor.postprocess(image, output_type=output_type)
738
+
739
+ # Offload all models
740
+ self.maybe_free_model_hooks()
741
+
742
+ if not return_dict:
743
+ return (image,)
744
+
745
+ return FluxPipelineOutput(images=image)
src/populate.py DELETED
@@ -1,58 +0,0 @@
1
- import json
2
- import os
3
-
4
- import pandas as pd
5
-
6
- from src.display.formatting import has_no_nan_values, make_clickable_model
7
- from src.display.utils import AutoEvalColumn, EvalQueueColumn
8
- from src.leaderboard.read_evals import get_raw_eval_results
9
-
10
-
11
- def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
12
- """Creates a dataframe from all the individual experiment results"""
13
- raw_data = get_raw_eval_results(results_path, requests_path)
14
- all_data_json = [v.to_dict() for v in raw_data]
15
-
16
- df = pd.DataFrame.from_records(all_data_json)
17
- df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
18
- df = df[cols].round(decimals=2)
19
-
20
- # filter out if any of the benchmarks have not been produced
21
- df = df[has_no_nan_values(df, benchmark_cols)]
22
- return df
23
-
24
-
25
- def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
26
- """Creates the different dataframes for the evaluation queues requestes"""
27
- entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
28
- all_evals = []
29
-
30
- for entry in entries:
31
- if ".json" in entry:
32
- file_path = os.path.join(save_path, entry)
33
- with open(file_path) as fp:
34
- data = json.load(fp)
35
-
36
- data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
37
- data[EvalQueueColumn.revision.name] = data.get("revision", "main")
38
-
39
- all_evals.append(data)
40
- elif ".md" not in entry:
41
- # this is a folder
42
- sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")]
43
- for sub_entry in sub_entries:
44
- file_path = os.path.join(save_path, entry, sub_entry)
45
- with open(file_path) as fp:
46
- data = json.load(fp)
47
-
48
- data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
49
- data[EvalQueueColumn.revision.name] = data.get("revision", "main")
50
- all_evals.append(data)
51
-
52
- pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
53
- running_list = [e for e in all_evals if e["status"] == "RUNNING"]
54
- finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
55
- df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
56
- df_running = pd.DataFrame.from_records(running_list, columns=cols)
57
- df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
58
- return df_finished[cols], df_running[cols], df_pending[cols]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/prompt_helper.py ADDED
@@ -0,0 +1,205 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+
4
+ def load_text_encoders(args, class_one, class_two):
5
+ text_encoder_one = class_one.from_pretrained(
6
+ args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant
7
+ )
8
+ text_encoder_two = class_two.from_pretrained(
9
+ args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.revision, variant=args.variant
10
+ )
11
+ return text_encoder_one, text_encoder_two
12
+
13
+
14
+ def tokenize_prompt(tokenizer, prompt, max_sequence_length):
15
+ text_inputs = tokenizer(
16
+ prompt,
17
+ padding="max_length",
18
+ max_length=max_sequence_length,
19
+ truncation=True,
20
+ return_length=False,
21
+ return_overflowing_tokens=False,
22
+ return_tensors="pt",
23
+ )
24
+ text_input_ids = text_inputs.input_ids
25
+ return text_input_ids
26
+
27
+
28
+ def tokenize_prompt_clip(tokenizer, prompt):
29
+ text_inputs = tokenizer(
30
+ prompt,
31
+ padding="max_length",
32
+ max_length=77,
33
+ truncation=True,
34
+ return_length=False,
35
+ return_overflowing_tokens=False,
36
+ return_tensors="pt",
37
+ )
38
+ text_input_ids = text_inputs.input_ids
39
+ return text_input_ids
40
+
41
+
42
+ def tokenize_prompt_t5(tokenizer, prompt):
43
+ text_inputs = tokenizer(
44
+ prompt,
45
+ padding="max_length",
46
+ max_length=512,
47
+ truncation=True,
48
+ return_length=False,
49
+ return_overflowing_tokens=False,
50
+ return_tensors="pt",
51
+ )
52
+ text_input_ids = text_inputs.input_ids
53
+ return text_input_ids
54
+
55
+
56
+ def _encode_prompt_with_t5(
57
+ text_encoder,
58
+ tokenizer,
59
+ max_sequence_length=512,
60
+ prompt=None,
61
+ num_images_per_prompt=1,
62
+ device=None,
63
+ text_input_ids=None,
64
+ ):
65
+ prompt = [prompt] if isinstance(prompt, str) else prompt
66
+ batch_size = len(prompt)
67
+
68
+ if tokenizer is not None:
69
+ text_inputs = tokenizer(
70
+ prompt,
71
+ padding="max_length",
72
+ max_length=max_sequence_length,
73
+ truncation=True,
74
+ return_length=False,
75
+ return_overflowing_tokens=False,
76
+ return_tensors="pt",
77
+ )
78
+ text_input_ids = text_inputs.input_ids
79
+ else:
80
+ if text_input_ids is None:
81
+ raise ValueError("text_input_ids must be provided when the tokenizer is not specified")
82
+
83
+ prompt_embeds = text_encoder(text_input_ids.to(device))[0]
84
+
85
+ dtype = text_encoder.dtype
86
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
87
+
88
+ _, seq_len, _ = prompt_embeds.shape
89
+
90
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
91
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
92
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
93
+
94
+ return prompt_embeds
95
+
96
+
97
+ def _encode_prompt_with_clip(
98
+ text_encoder,
99
+ tokenizer,
100
+ prompt: str,
101
+ device=None,
102
+ text_input_ids=None,
103
+ num_images_per_prompt: int = 1,
104
+ ):
105
+ prompt = [prompt] if isinstance(prompt, str) else prompt
106
+ batch_size = len(prompt)
107
+
108
+ if tokenizer is not None:
109
+ text_inputs = tokenizer(
110
+ prompt,
111
+ padding="max_length",
112
+ max_length=77,
113
+ truncation=True,
114
+ return_overflowing_tokens=False,
115
+ return_length=False,
116
+ return_tensors="pt",
117
+ )
118
+
119
+ text_input_ids = text_inputs.input_ids
120
+ else:
121
+ if text_input_ids is None:
122
+ raise ValueError("text_input_ids must be provided when the tokenizer is not specified")
123
+
124
+ prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=False)
125
+
126
+ # Use pooled output of CLIPTextModel
127
+ prompt_embeds = prompt_embeds.pooler_output
128
+ prompt_embeds = prompt_embeds.to(dtype=text_encoder.dtype, device=device)
129
+
130
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
131
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
132
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
133
+
134
+ return prompt_embeds
135
+
136
+
137
+ def encode_prompt(
138
+ text_encoders,
139
+ tokenizers,
140
+ prompt: str,
141
+ max_sequence_length,
142
+ device=None,
143
+ num_images_per_prompt: int = 1,
144
+ text_input_ids_list=None,
145
+ ):
146
+ prompt = [prompt] if isinstance(prompt, str) else prompt
147
+ dtype = text_encoders[0].dtype
148
+
149
+ pooled_prompt_embeds = _encode_prompt_with_clip(
150
+ text_encoder=text_encoders[0],
151
+ tokenizer=tokenizers[0],
152
+ prompt=prompt,
153
+ device=device if device is not None else text_encoders[0].device,
154
+ num_images_per_prompt=num_images_per_prompt,
155
+ text_input_ids=text_input_ids_list[0] if text_input_ids_list else None,
156
+ )
157
+
158
+ prompt_embeds = _encode_prompt_with_t5(
159
+ text_encoder=text_encoders[1],
160
+ tokenizer=tokenizers[1],
161
+ max_sequence_length=max_sequence_length,
162
+ prompt=prompt,
163
+ num_images_per_prompt=num_images_per_prompt,
164
+ device=device if device is not None else text_encoders[1].device,
165
+ text_input_ids=text_input_ids_list[1] if text_input_ids_list else None,
166
+ )
167
+
168
+ text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
169
+
170
+ return prompt_embeds, pooled_prompt_embeds, text_ids
171
+
172
+
173
+ def encode_token_ids(text_encoders, tokens, accelerator, num_images_per_prompt=1, device=None):
174
+ text_encoder_clip = text_encoders[0]
175
+ text_encoder_t5 = text_encoders[1]
176
+ tokens_clip, tokens_t5 = tokens[0], tokens[1]
177
+ batch_size = tokens_clip.shape[0]
178
+
179
+ if device == "cpu":
180
+ device = "cpu"
181
+ else:
182
+ device = accelerator.device
183
+
184
+ # clip
185
+ prompt_embeds = text_encoder_clip(tokens_clip.to(device), output_hidden_states=False)
186
+ # Use pooled output of CLIPTextModel
187
+ prompt_embeds = prompt_embeds.pooler_output
188
+ prompt_embeds = prompt_embeds.to(dtype=text_encoder_clip.dtype, device=accelerator.device)
189
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
190
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
191
+ pooled_prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
192
+ pooled_prompt_embeds = pooled_prompt_embeds.to(dtype=text_encoder_clip.dtype, device=accelerator.device)
193
+
194
+ # t5
195
+ prompt_embeds = text_encoder_t5(tokens_t5.to(device))[0]
196
+ dtype = text_encoder_t5.dtype
197
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=accelerator.device)
198
+ _, seq_len, _ = prompt_embeds.shape
199
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
200
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
201
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
202
+
203
+ text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=accelerator.device, dtype=dtype)
204
+
205
+ return prompt_embeds, pooled_prompt_embeds, text_ids
src/submission/check_validity.py DELETED
@@ -1,99 +0,0 @@
1
- import json
2
- import os
3
- import re
4
- from collections import defaultdict
5
- from datetime import datetime, timedelta, timezone
6
-
7
- import huggingface_hub
8
- from huggingface_hub import ModelCard
9
- from huggingface_hub.hf_api import ModelInfo
10
- from transformers import AutoConfig
11
- from transformers.models.auto.tokenization_auto import AutoTokenizer
12
-
13
- def check_model_card(repo_id: str) -> tuple[bool, str]:
14
- """Checks if the model card and license exist and have been filled"""
15
- try:
16
- card = ModelCard.load(repo_id)
17
- except huggingface_hub.utils.EntryNotFoundError:
18
- return False, "Please add a model card to your model to explain how you trained/fine-tuned it."
19
-
20
- # Enforce license metadata
21
- if card.data.license is None:
22
- if not ("license_name" in card.data and "license_link" in card.data):
23
- return False, (
24
- "License not found. Please add a license to your model card using the `license` metadata or a"
25
- " `license_name`/`license_link` pair."
26
- )
27
-
28
- # Enforce card content
29
- if len(card.text) < 200:
30
- return False, "Please add a description to your model card, it is too short."
31
-
32
- return True, ""
33
-
34
- def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
35
- """Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
36
- try:
37
- config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
38
- if test_tokenizer:
39
- try:
40
- tk = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
41
- except ValueError as e:
42
- return (
43
- False,
44
- f"uses a tokenizer which is not in a transformers release: {e}",
45
- None
46
- )
47
- except Exception as e:
48
- return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None)
49
- return True, None, config
50
-
51
- except ValueError:
52
- return (
53
- False,
54
- "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
55
- None
56
- )
57
-
58
- except Exception as e:
59
- return False, "was not found on hub!", None
60
-
61
-
62
- def get_model_size(model_info: ModelInfo, precision: str):
63
- """Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
64
- try:
65
- model_size = round(model_info.safetensors["total"] / 1e9, 3)
66
- except (AttributeError, TypeError):
67
- return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
68
-
69
- size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
70
- model_size = size_factor * model_size
71
- return model_size
72
-
73
- def get_model_arch(model_info: ModelInfo):
74
- """Gets the model architecture from the configuration"""
75
- return model_info.config.get("architectures", "Unknown")
76
-
77
- def already_submitted_models(requested_models_dir: str) -> set[str]:
78
- """Gather a list of already submitted models to avoid duplicates"""
79
- depth = 1
80
- file_names = []
81
- users_to_submission_dates = defaultdict(list)
82
-
83
- for root, _, files in os.walk(requested_models_dir):
84
- current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
85
- if current_depth == depth:
86
- for file in files:
87
- if not file.endswith(".json"):
88
- continue
89
- with open(os.path.join(root, file), "r") as f:
90
- info = json.load(f)
91
- file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
92
-
93
- # Select organisation
94
- if info["model"].count("/") == 0 or "submitted_time" not in info:
95
- continue
96
- organisation, _ = info["model"].split("/")
97
- users_to_submission_dates[organisation].append(info["submitted_time"])
98
-
99
- return set(file_names), users_to_submission_dates
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/submission/submit.py DELETED
@@ -1,119 +0,0 @@
1
- import json
2
- import os
3
- from datetime import datetime, timezone
4
-
5
- from src.display.formatting import styled_error, styled_message, styled_warning
6
- from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
7
- from src.submission.check_validity import (
8
- already_submitted_models,
9
- check_model_card,
10
- get_model_size,
11
- is_model_on_hub,
12
- )
13
-
14
- REQUESTED_MODELS = None
15
- USERS_TO_SUBMISSION_DATES = None
16
-
17
- def add_new_eval(
18
- model: str,
19
- base_model: str,
20
- revision: str,
21
- precision: str,
22
- weight_type: str,
23
- model_type: str,
24
- ):
25
- global REQUESTED_MODELS
26
- global USERS_TO_SUBMISSION_DATES
27
- if not REQUESTED_MODELS:
28
- REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
29
-
30
- user_name = ""
31
- model_path = model
32
- if "/" in model:
33
- user_name = model.split("/")[0]
34
- model_path = model.split("/")[1]
35
-
36
- precision = precision.split(" ")[0]
37
- current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
38
-
39
- if model_type is None or model_type == "":
40
- return styled_error("Please select a model type.")
41
-
42
- # Does the model actually exist?
43
- if revision == "":
44
- revision = "main"
45
-
46
- # Is the model on the hub?
47
- if weight_type in ["Delta", "Adapter"]:
48
- base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
49
- if not base_model_on_hub:
50
- return styled_error(f'Base model "{base_model}" {error}')
51
-
52
- if not weight_type == "Adapter":
53
- model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
54
- if not model_on_hub:
55
- return styled_error(f'Model "{model}" {error}')
56
-
57
- # Is the model info correctly filled?
58
- try:
59
- model_info = API.model_info(repo_id=model, revision=revision)
60
- except Exception:
61
- return styled_error("Could not get your model information. Please fill it up properly.")
62
-
63
- model_size = get_model_size(model_info=model_info, precision=precision)
64
-
65
- # Were the model card and license filled?
66
- try:
67
- license = model_info.cardData["license"]
68
- except Exception:
69
- return styled_error("Please select a license for your model")
70
-
71
- modelcard_OK, error_msg = check_model_card(model)
72
- if not modelcard_OK:
73
- return styled_error(error_msg)
74
-
75
- # Seems good, creating the eval
76
- print("Adding new eval")
77
-
78
- eval_entry = {
79
- "model": model,
80
- "base_model": base_model,
81
- "revision": revision,
82
- "precision": precision,
83
- "weight_type": weight_type,
84
- "status": "PENDING",
85
- "submitted_time": current_time,
86
- "model_type": model_type,
87
- "likes": model_info.likes,
88
- "params": model_size,
89
- "license": license,
90
- "private": False,
91
- }
92
-
93
- # Check for duplicate submission
94
- if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
95
- return styled_warning("This model has been already submitted.")
96
-
97
- print("Creating eval file")
98
- OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
99
- os.makedirs(OUT_DIR, exist_ok=True)
100
- out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
101
-
102
- with open(out_path, "w") as f:
103
- f.write(json.dumps(eval_entry))
104
-
105
- print("Uploading eval file")
106
- API.upload_file(
107
- path_or_fileobj=out_path,
108
- path_in_repo=out_path.split("eval-queue/")[1],
109
- repo_id=QUEUE_REPO,
110
- repo_type="dataset",
111
- commit_message=f"Add {model} to eval queue",
112
- )
113
-
114
- # Remove the local file
115
- os.remove(out_path)
116
-
117
- return styled_message(
118
- "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
119
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/transformer_flux.py ADDED
@@ -0,0 +1,583 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, Dict, Optional, Tuple, Union
2
+
3
+ import numpy as np
4
+ import torch
5
+ import torch.nn as nn
6
+ import torch.nn.functional as F
7
+
8
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
9
+ from diffusers.loaders import FluxTransformer2DLoadersMixin, FromOriginalModelMixin, PeftAdapterMixin
10
+ from diffusers.models.attention import FeedForward
11
+ from diffusers.models.attention_processor import (
12
+ Attention,
13
+ AttentionProcessor,
14
+ FluxAttnProcessor2_0,
15
+ FluxAttnProcessor2_0_NPU,
16
+ FusedFluxAttnProcessor2_0,
17
+ )
18
+ from diffusers.models.modeling_utils import ModelMixin
19
+ from diffusers.models.normalization import AdaLayerNormContinuous, AdaLayerNormZero, AdaLayerNormZeroSingle
20
+ from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
21
+ from diffusers.utils.import_utils import is_torch_npu_available
22
+ from diffusers.utils.torch_utils import maybe_allow_in_graph
23
+ from diffusers.models.embeddings import CombinedTimestepGuidanceTextProjEmbeddings, CombinedTimestepTextProjEmbeddings, FluxPosEmbed
24
+ from diffusers.models.modeling_outputs import Transformer2DModelOutput
25
+
26
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
27
+
28
+ @maybe_allow_in_graph
29
+ class FluxSingleTransformerBlock(nn.Module):
30
+
31
+ def __init__(self, dim, num_attention_heads, attention_head_dim, mlp_ratio=4.0):
32
+ super().__init__()
33
+ self.mlp_hidden_dim = int(dim * mlp_ratio)
34
+
35
+ self.norm = AdaLayerNormZeroSingle(dim)
36
+ self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim)
37
+ self.act_mlp = nn.GELU(approximate="tanh")
38
+ self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim)
39
+
40
+ if is_torch_npu_available():
41
+ processor = FluxAttnProcessor2_0_NPU()
42
+ else:
43
+ processor = FluxAttnProcessor2_0()
44
+ self.attn = Attention(
45
+ query_dim=dim,
46
+ cross_attention_dim=None,
47
+ dim_head=attention_head_dim,
48
+ heads=num_attention_heads,
49
+ out_dim=dim,
50
+ bias=True,
51
+ processor=processor,
52
+ qk_norm="rms_norm",
53
+ eps=1e-6,
54
+ pre_only=True,
55
+ )
56
+
57
+ def forward(
58
+ self,
59
+ hidden_states: torch.Tensor,
60
+ cond_hidden_states: torch.Tensor,
61
+ temb: torch.Tensor,
62
+ cond_temb: torch.Tensor,
63
+ image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
64
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
65
+ ) -> torch.Tensor:
66
+ use_cond = cond_hidden_states is not None
67
+
68
+ residual = hidden_states
69
+ norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
70
+ mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
71
+
72
+ if use_cond:
73
+ residual_cond = cond_hidden_states
74
+ norm_cond_hidden_states, cond_gate = self.norm(cond_hidden_states, emb=cond_temb)
75
+ mlp_cond_hidden_states = self.act_mlp(self.proj_mlp(norm_cond_hidden_states))
76
+
77
+ norm_hidden_states_concat = torch.concat([norm_hidden_states, norm_cond_hidden_states], dim=-2)
78
+
79
+ joint_attention_kwargs = joint_attention_kwargs or {}
80
+ attn_output = self.attn(
81
+ hidden_states=norm_hidden_states_concat,
82
+ image_rotary_emb=image_rotary_emb,
83
+ use_cond=use_cond,
84
+ **joint_attention_kwargs,
85
+ )
86
+ if use_cond:
87
+ attn_output, cond_attn_output = attn_output
88
+
89
+ hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
90
+ gate = gate.unsqueeze(1)
91
+ hidden_states = gate * self.proj_out(hidden_states)
92
+ hidden_states = residual + hidden_states
93
+
94
+ if use_cond:
95
+ condition_latents = torch.cat([cond_attn_output, mlp_cond_hidden_states], dim=2)
96
+ cond_gate = cond_gate.unsqueeze(1)
97
+ condition_latents = cond_gate * self.proj_out(condition_latents)
98
+ condition_latents = residual_cond + condition_latents
99
+
100
+ if hidden_states.dtype == torch.float16:
101
+ hidden_states = hidden_states.clip(-65504, 65504)
102
+
103
+ return hidden_states, condition_latents if use_cond else None
104
+
105
+
106
+ @maybe_allow_in_graph
107
+ class FluxTransformerBlock(nn.Module):
108
+ def __init__(
109
+ self, dim: int, num_attention_heads: int, attention_head_dim: int, qk_norm: str = "rms_norm", eps: float = 1e-6
110
+ ):
111
+ super().__init__()
112
+
113
+ self.norm1 = AdaLayerNormZero(dim)
114
+
115
+ self.norm1_context = AdaLayerNormZero(dim)
116
+
117
+ if hasattr(F, "scaled_dot_product_attention"):
118
+ processor = FluxAttnProcessor2_0()
119
+ else:
120
+ raise ValueError(
121
+ "The current PyTorch version does not support the `scaled_dot_product_attention` function."
122
+ )
123
+ self.attn = Attention(
124
+ query_dim=dim,
125
+ cross_attention_dim=None,
126
+ added_kv_proj_dim=dim,
127
+ dim_head=attention_head_dim,
128
+ heads=num_attention_heads,
129
+ out_dim=dim,
130
+ context_pre_only=False,
131
+ bias=True,
132
+ processor=processor,
133
+ qk_norm=qk_norm,
134
+ eps=eps,
135
+ )
136
+
137
+ self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
138
+ self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
139
+
140
+ self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
141
+ self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
142
+
143
+ # let chunk size default to None
144
+ self._chunk_size = None
145
+ self._chunk_dim = 0
146
+
147
+ def forward(
148
+ self,
149
+ hidden_states: torch.Tensor,
150
+ cond_hidden_states: torch.Tensor,
151
+ encoder_hidden_states: torch.Tensor,
152
+ temb: torch.Tensor,
153
+ cond_temb: torch.Tensor,
154
+ image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
155
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
156
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
157
+ use_cond = cond_hidden_states is not None
158
+
159
+ norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
160
+ if use_cond:
161
+ (
162
+ norm_cond_hidden_states,
163
+ cond_gate_msa,
164
+ cond_shift_mlp,
165
+ cond_scale_mlp,
166
+ cond_gate_mlp,
167
+ ) = self.norm1(cond_hidden_states, emb=cond_temb)
168
+
169
+ norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
170
+ encoder_hidden_states, emb=temb
171
+ )
172
+
173
+ norm_hidden_states = torch.concat([norm_hidden_states, norm_cond_hidden_states], dim=-2)
174
+
175
+ joint_attention_kwargs = joint_attention_kwargs or {}
176
+ # Attention.
177
+ attention_outputs = self.attn(
178
+ hidden_states=norm_hidden_states,
179
+ encoder_hidden_states=norm_encoder_hidden_states,
180
+ image_rotary_emb=image_rotary_emb,
181
+ use_cond=use_cond,
182
+ **joint_attention_kwargs,
183
+ )
184
+
185
+ attn_output, context_attn_output = attention_outputs[:2]
186
+ cond_attn_output = attention_outputs[2] if use_cond else None
187
+
188
+ # Process attention outputs for the `hidden_states`.
189
+ attn_output = gate_msa.unsqueeze(1) * attn_output
190
+ hidden_states = hidden_states + attn_output
191
+
192
+ if use_cond:
193
+ cond_attn_output = cond_gate_msa.unsqueeze(1) * cond_attn_output
194
+ cond_hidden_states = cond_hidden_states + cond_attn_output
195
+
196
+ norm_hidden_states = self.norm2(hidden_states)
197
+ norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
198
+
199
+ if use_cond:
200
+ norm_cond_hidden_states = self.norm2(cond_hidden_states)
201
+ norm_cond_hidden_states = (
202
+ norm_cond_hidden_states * (1 + cond_scale_mlp[:, None])
203
+ + cond_shift_mlp[:, None]
204
+ )
205
+
206
+ ff_output = self.ff(norm_hidden_states)
207
+ ff_output = gate_mlp.unsqueeze(1) * ff_output
208
+ hidden_states = hidden_states + ff_output
209
+
210
+ if use_cond:
211
+ cond_ff_output = self.ff(norm_cond_hidden_states)
212
+ cond_ff_output = cond_gate_mlp.unsqueeze(1) * cond_ff_output
213
+ cond_hidden_states = cond_hidden_states + cond_ff_output
214
+
215
+ # Process attention outputs for the `encoder_hidden_states`.
216
+
217
+ context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
218
+ encoder_hidden_states = encoder_hidden_states + context_attn_output
219
+
220
+ norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
221
+ norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
222
+
223
+ context_ff_output = self.ff_context(norm_encoder_hidden_states)
224
+ encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
225
+ if encoder_hidden_states.dtype == torch.float16:
226
+ encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
227
+
228
+ return encoder_hidden_states, hidden_states, cond_hidden_states if use_cond else None
229
+
230
+
231
+ class FluxTransformer2DModel(
232
+ ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, FluxTransformer2DLoadersMixin
233
+ ):
234
+ _supports_gradient_checkpointing = True
235
+ _no_split_modules = ["FluxTransformerBlock", "FluxSingleTransformerBlock"]
236
+
237
+ @register_to_config
238
+ def __init__(
239
+ self,
240
+ patch_size: int = 1,
241
+ in_channels: int = 64,
242
+ out_channels: Optional[int] = None,
243
+ num_layers: int = 19,
244
+ num_single_layers: int = 38,
245
+ attention_head_dim: int = 128,
246
+ num_attention_heads: int = 24,
247
+ joint_attention_dim: int = 4096,
248
+ pooled_projection_dim: int = 768,
249
+ guidance_embeds: bool = False,
250
+ axes_dims_rope: Tuple[int] = (16, 56, 56),
251
+ ):
252
+ super().__init__()
253
+ self.out_channels = out_channels or in_channels
254
+ self.inner_dim = num_attention_heads * attention_head_dim
255
+
256
+ self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)
257
+
258
+ text_time_guidance_cls = (
259
+ CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings
260
+ )
261
+ self.time_text_embed = text_time_guidance_cls(
262
+ embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim
263
+ )
264
+
265
+ self.context_embedder = nn.Linear(joint_attention_dim, self.inner_dim)
266
+ self.x_embedder = nn.Linear(in_channels, self.inner_dim)
267
+
268
+ self.transformer_blocks = nn.ModuleList(
269
+ [
270
+ FluxTransformerBlock(
271
+ dim=self.inner_dim,
272
+ num_attention_heads=num_attention_heads,
273
+ attention_head_dim=attention_head_dim,
274
+ )
275
+ for _ in range(num_layers)
276
+ ]
277
+ )
278
+
279
+ self.single_transformer_blocks = nn.ModuleList(
280
+ [
281
+ FluxSingleTransformerBlock(
282
+ dim=self.inner_dim,
283
+ num_attention_heads=num_attention_heads,
284
+ attention_head_dim=attention_head_dim,
285
+ )
286
+ for _ in range(num_single_layers)
287
+ ]
288
+ )
289
+
290
+ self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
291
+ self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
292
+
293
+ self.gradient_checkpointing = False
294
+
295
+ @property
296
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
297
+ def attn_processors(self) -> Dict[str, AttentionProcessor]:
298
+ r"""
299
+ Returns:
300
+ `dict` of attention processors: A dictionary containing all attention processors used in the model with
301
+ indexed by its weight name.
302
+ """
303
+ # set recursively
304
+ processors = {}
305
+
306
+ def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
307
+ if hasattr(module, "get_processor"):
308
+ processors[f"{name}.processor"] = module.get_processor()
309
+
310
+ for sub_name, child in module.named_children():
311
+ fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
312
+
313
+ return processors
314
+
315
+ for name, module in self.named_children():
316
+ fn_recursive_add_processors(name, module, processors)
317
+
318
+ return processors
319
+
320
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
321
+ def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
322
+ r"""
323
+ Sets the attention processor to use to compute attention.
324
+
325
+ Parameters:
326
+ processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
327
+ The instantiated processor class or a dictionary of processor classes that will be set as the processor
328
+ for **all** `Attention` layers.
329
+
330
+ If `processor` is a dict, the key needs to define the path to the corresponding cross attention
331
+ processor. This is strongly recommended when setting trainable attention processors.
332
+
333
+ """
334
+ count = len(self.attn_processors.keys())
335
+
336
+ if isinstance(processor, dict) and len(processor) != count:
337
+ raise ValueError(
338
+ f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
339
+ f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
340
+ )
341
+
342
+ def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
343
+ if hasattr(module, "set_processor"):
344
+ if not isinstance(processor, dict):
345
+ module.set_processor(processor)
346
+ else:
347
+ module.set_processor(processor.pop(f"{name}.processor"))
348
+
349
+ for sub_name, child in module.named_children():
350
+ fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
351
+
352
+ for name, module in self.named_children():
353
+ fn_recursive_attn_processor(name, module, processor)
354
+
355
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedFluxAttnProcessor2_0
356
+ def fuse_qkv_projections(self):
357
+ """
358
+ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
359
+ are fused. For cross-attention modules, key and value projection matrices are fused.
360
+
361
+ <Tip warning={true}>
362
+
363
+ This API is 🧪 experimental.
364
+
365
+ </Tip>
366
+ """
367
+ self.original_attn_processors = None
368
+
369
+ for _, attn_processor in self.attn_processors.items():
370
+ if "Added" in str(attn_processor.__class__.__name__):
371
+ raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
372
+
373
+ self.original_attn_processors = self.attn_processors
374
+
375
+ for module in self.modules():
376
+ if isinstance(module, Attention):
377
+ module.fuse_projections(fuse=True)
378
+
379
+ self.set_attn_processor(FusedFluxAttnProcessor2_0())
380
+
381
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
382
+ def unfuse_qkv_projections(self):
383
+ """Disables the fused QKV projection if enabled.
384
+
385
+ <Tip warning={true}>
386
+
387
+ This API is 🧪 experimental.
388
+
389
+ </Tip>
390
+
391
+ """
392
+ if self.original_attn_processors is not None:
393
+ self.set_attn_processor(self.original_attn_processors)
394
+
395
+ def _set_gradient_checkpointing(self, module, value=False):
396
+ if hasattr(module, "gradient_checkpointing"):
397
+ module.gradient_checkpointing = value
398
+
399
+ def forward(
400
+ self,
401
+ hidden_states: torch.Tensor,
402
+ cond_hidden_states: torch.Tensor = None,
403
+ encoder_hidden_states: torch.Tensor = None,
404
+ pooled_projections: torch.Tensor = None,
405
+ timestep: torch.LongTensor = None,
406
+ img_ids: torch.Tensor = None,
407
+ txt_ids: torch.Tensor = None,
408
+ guidance: torch.Tensor = None,
409
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
410
+ controlnet_block_samples=None,
411
+ controlnet_single_block_samples=None,
412
+ return_dict: bool = True,
413
+ controlnet_blocks_repeat: bool = False,
414
+ ) -> Union[torch.Tensor, Transformer2DModelOutput]:
415
+ if cond_hidden_states is not None:
416
+ use_condition = True
417
+ else:
418
+ use_condition = False
419
+
420
+ if joint_attention_kwargs is not None:
421
+ joint_attention_kwargs = joint_attention_kwargs.copy()
422
+ lora_scale = joint_attention_kwargs.pop("scale", 1.0)
423
+ else:
424
+ lora_scale = 1.0
425
+
426
+ if USE_PEFT_BACKEND:
427
+ # weight the lora layers by setting `lora_scale` for each PEFT layer
428
+ scale_lora_layers(self, lora_scale)
429
+ else:
430
+ if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
431
+ logger.warning(
432
+ "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
433
+ )
434
+
435
+ hidden_states = self.x_embedder(hidden_states)
436
+ cond_hidden_states = self.x_embedder(cond_hidden_states)
437
+
438
+ timestep = timestep.to(hidden_states.dtype) * 1000
439
+ if guidance is not None:
440
+ guidance = guidance.to(hidden_states.dtype) * 1000
441
+ else:
442
+ guidance = None
443
+
444
+ temb = (
445
+ self.time_text_embed(timestep, pooled_projections)
446
+ if guidance is None
447
+ else self.time_text_embed(timestep, guidance, pooled_projections)
448
+ )
449
+
450
+ cond_temb = (
451
+ self.time_text_embed(torch.ones_like(timestep) * 0, pooled_projections)
452
+ if guidance is None
453
+ else self.time_text_embed(
454
+ torch.ones_like(timestep) * 0, guidance, pooled_projections
455
+ )
456
+ )
457
+
458
+ encoder_hidden_states = self.context_embedder(encoder_hidden_states)
459
+
460
+ if txt_ids.ndim == 3:
461
+ logger.warning(
462
+ "Passing `txt_ids` 3d torch.Tensor is deprecated."
463
+ "Please remove the batch dimension and pass it as a 2d torch Tensor"
464
+ )
465
+ txt_ids = txt_ids[0]
466
+ if img_ids.ndim == 3:
467
+ logger.warning(
468
+ "Passing `img_ids` 3d torch.Tensor is deprecated."
469
+ "Please remove the batch dimension and pass it as a 2d torch Tensor"
470
+ )
471
+ img_ids = img_ids[0]
472
+
473
+ ids = torch.cat((txt_ids, img_ids), dim=0)
474
+ image_rotary_emb = self.pos_embed(ids)
475
+
476
+ if joint_attention_kwargs is not None and "ip_adapter_image_embeds" in joint_attention_kwargs:
477
+ ip_adapter_image_embeds = joint_attention_kwargs.pop("ip_adapter_image_embeds")
478
+ ip_hidden_states = self.encoder_hid_proj(ip_adapter_image_embeds)
479
+ joint_attention_kwargs.update({"ip_hidden_states": ip_hidden_states})
480
+
481
+ for index_block, block in enumerate(self.transformer_blocks):
482
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
483
+
484
+ def create_custom_forward(module, return_dict=None):
485
+ def custom_forward(*inputs):
486
+ if return_dict is not None:
487
+ return module(*inputs, return_dict=return_dict)
488
+ else:
489
+ return module(*inputs)
490
+
491
+ return custom_forward
492
+
493
+ ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
494
+ encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
495
+ create_custom_forward(block),
496
+ hidden_states,
497
+ encoder_hidden_states,
498
+ temb,
499
+ image_rotary_emb,
500
+ cond_temb=cond_temb if use_condition else None,
501
+ cond_hidden_states=cond_hidden_states if use_condition else None,
502
+ **ckpt_kwargs,
503
+ )
504
+
505
+ else:
506
+ encoder_hidden_states, hidden_states, cond_hidden_states = block(
507
+ hidden_states=hidden_states,
508
+ encoder_hidden_states=encoder_hidden_states,
509
+ cond_hidden_states=cond_hidden_states if use_condition else None,
510
+ temb=temb,
511
+ cond_temb=cond_temb if use_condition else None,
512
+ image_rotary_emb=image_rotary_emb,
513
+ joint_attention_kwargs=joint_attention_kwargs,
514
+ )
515
+
516
+ # controlnet residual
517
+ if controlnet_block_samples is not None:
518
+ interval_control = len(self.transformer_blocks) / len(controlnet_block_samples)
519
+ interval_control = int(np.ceil(interval_control))
520
+ # For Xlabs ControlNet.
521
+ if controlnet_blocks_repeat:
522
+ hidden_states = (
523
+ hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)]
524
+ )
525
+ else:
526
+ hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]
527
+ hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
528
+
529
+ for index_block, block in enumerate(self.single_transformer_blocks):
530
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
531
+
532
+ def create_custom_forward(module, return_dict=None):
533
+ def custom_forward(*inputs):
534
+ if return_dict is not None:
535
+ return module(*inputs, return_dict=return_dict)
536
+ else:
537
+ return module(*inputs)
538
+
539
+ return custom_forward
540
+
541
+ ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
542
+ hidden_states, cond_hidden_states = torch.utils.checkpoint.checkpoint(
543
+ create_custom_forward(block),
544
+ hidden_states,
545
+ temb,
546
+ image_rotary_emb,
547
+ cond_temb=cond_temb if use_condition else None,
548
+ cond_hidden_states=cond_hidden_states if use_condition else None,
549
+ **ckpt_kwargs,
550
+ )
551
+
552
+ else:
553
+ hidden_states, cond_hidden_states = block(
554
+ hidden_states=hidden_states,
555
+ cond_hidden_states=cond_hidden_states if use_condition else None,
556
+ temb=temb,
557
+ cond_temb=cond_temb if use_condition else None,
558
+ image_rotary_emb=image_rotary_emb,
559
+ joint_attention_kwargs=joint_attention_kwargs,
560
+ )
561
+
562
+ # controlnet residual
563
+ if controlnet_single_block_samples is not None:
564
+ interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples)
565
+ interval_control = int(np.ceil(interval_control))
566
+ hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
567
+ hidden_states[:, encoder_hidden_states.shape[1] :, ...]
568
+ + controlnet_single_block_samples[index_block // interval_control]
569
+ )
570
+
571
+ hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
572
+
573
+ hidden_states = self.norm_out(hidden_states, temb)
574
+ output = self.proj_out(hidden_states)
575
+
576
+ if USE_PEFT_BACKEND:
577
+ # remove `lora_scale` from each PEFT layer
578
+ unscale_lora_layers(self, lora_scale)
579
+
580
+ if not return_dict:
581
+ return (output,)
582
+
583
+ return Transformer2DModelOutput(sample=output)
test_imgs/00.png ADDED

Git LFS Details

  • SHA256: 16dcab43b4629a64c1760f272d571503b5d0fee26b17f30dd013fc1632e56723
  • Pointer size: 132 Bytes
  • Size of remote file: 1.39 MB
test_imgs/02.png ADDED

Git LFS Details

  • SHA256: fd747ba7f7fe4cfc426aba2708555afaa7a9c2983530d375a7c53eda76d66419
  • Pointer size: 130 Bytes
  • Size of remote file: 63.1 kB
test_imgs/03.png ADDED

Git LFS Details

  • SHA256: eb84804bbcb48e90bb95970a6999e615d970420d5c219738830560e5598f45a5
  • Pointer size: 132 Bytes
  • Size of remote file: 2.27 MB
test_imgs/04.png ADDED

Git LFS Details

  • SHA256: 06ac65ff99359db49b2830548ca0a30de4c9dbfc875b9acea102bab05087f820
  • Pointer size: 131 Bytes
  • Size of remote file: 288 kB
test_imgs/06.png ADDED

Git LFS Details

  • SHA256: bbe438542d9b014a1d1796b2ccb6049026f44d44a5f27557fb03ee816fa50d8f
  • Pointer size: 130 Bytes
  • Size of remote file: 35.7 kB
test_imgs/07.png ADDED

Git LFS Details

  • SHA256: f24ae80001af07b0da916e23213ecd188786313f705aa07bd8b82813edca3a66
  • Pointer size: 131 Bytes
  • Size of remote file: 110 kB
test_imgs/08.png ADDED

Git LFS Details

  • SHA256: 7e2c059431fa1350a33be52e704d7623cdb2c3ab43e15b122c1b0b40394503cf
  • Pointer size: 132 Bytes
  • Size of remote file: 1.08 MB
test_imgs/09.png ADDED

Git LFS Details

  • SHA256: 19ac9b44bca52d8a50bc23570354891b1244c9e6c09c76d149f0ac17efd08641
  • Pointer size: 130 Bytes
  • Size of remote file: 70.3 kB