lifeng
修改参数
92bd220
import spaces
import os
import json
import time
import torch
from PIL import Image
from tqdm import tqdm
import gradio as gr
from safetensors.torch import save_file
from src.pipeline import FluxPipeline
from src.transformer_flux import FluxTransformer2DModel
from src.lora_helper import set_single_lora, set_multi_lora, unset_lora
from huggingface_hub import login
token = os.getenv("hugface_token")
if token:
login(token=token)
print("Login successful!")
else:
print("hugface_token not found in environment variables.")
# Initialize the image processor
base_path = "black-forest-labs/FLUX.1-dev"
lora_base_path = "./models"
# pipe = FluxPipeline.from_pretrained(base_path, torch_dtype=torch.bfloat16)
pipe = FluxPipeline.from_pretrained(base_path, torch_dtype=torch.bfloat16)
transformer = FluxTransformer2DModel.from_pretrained(base_path, subfolder="transformer", torch_dtype=torch.bfloat16)
pipe.transformer = transformer
# try:
pipe.to("cuda")
# 在初始化模型后立即清理GPU缓存和启用注意力切片
# torch.cuda.empty_cache() # 清理GPU缓存
# pipe.enable_attention_slicing() # 启用注意力切片以减少内存使用
# except torch.cuda.OutOfMemoryError:
# print("CUDA out of memory. Switching to CPU.")
# pipe.to("cpu")
def clear_cache(transformer):
for name, attn_processor in transformer.attn_processors.items():
attn_processor.bank_kv.clear()
# Define the Gradio interface
@spaces.GPU()
def single_condition_generate_image(prompt, spatial_img, height, width, seed, control_type):
# Set the control type
if control_type == "Ghibli":
lora_path = os.path.join(lora_base_path, "Ghibli.safetensors")
set_single_lora(pipe.transformer, lora_path, lora_weights=[1], cond_size=512)
# Process the image
spatial_imgs = [spatial_img] if spatial_img else []
image = pipe(
prompt,
height=int(height),
width=int(width),
guidance_scale=3.5,
num_inference_steps=25,
max_sequence_length=512,
generator=torch.Generator("cpu").manual_seed(seed),
subject_images=[],
spatial_images=spatial_imgs,
cond_size=512,
).images[0]
clear_cache(pipe.transformer)
return image
# Define the Gradio interface components
control_types = ["Ghibli"]
# Example data
single_examples = [
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/00.png"), 680, 1024, 5, "Ghibli"],
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/02.png"), 560, 1024, 42, "Ghibli"],
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/03.png"), 568, 1024, 1, "Ghibli"],
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/04.png"), 768, 672, 1, "Ghibli"],
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/06.png"), 896, 1024, 1, "Ghibli"],
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/07.png"), 528, 800, 1, "Ghibli"],
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/08.png"), 696, 1024, 1, "Ghibli"],
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/09.png"), 896, 1024, 1, "Ghibli"],
]
# Create the Gradio Blocks interface
with gr.Blocks() as demo:
gr.Markdown("# Ghibli Studio Control Image Generation")
gr.Markdown("The model is trained on **only 100 real Asian faces** paired with **GPT-4o-generated Ghibli-style counterparts**, and it preserves facial features while applying the iconic anime aesthetic.")
gr.Markdown("Generate images using EasyControl with Ghibli control LoRAs.(Due to hardware constraints, only low-resolution images can be generated. For high-resolution (1024+), please set up your own environment.)")
gr.Markdown("**[Attention!!]**:The recommended prompts for using Ghibli Control LoRA should include the trigger words: `Ghibli Studio style, Charming hand-drawn anime-style illustration`")
# gr.Markdown("😊😊If you like this demo, please give us a star (github: [EasyControl](https://github.com/Xiaojiu-z/EasyControl))")
with gr.Tab("Ghibli Condition Generation"):
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt", value="Ghibli Studio style, Charming hand-drawn anime-style illustration")
spatial_img = gr.Image(label="Ghibli Image", type="pil") # 上传图像文件
height = gr.Slider(minimum=256, maximum=1024, step=64, label="Height", value=768)
width = gr.Slider(minimum=256, maximum=1024, step=64, label="Width", value=768)
seed = gr.Number(label="Seed", value=42)
control_type = gr.Dropdown(choices=control_types, label="Control Type")
single_generate_btn = gr.Button("Generate Image")
with gr.Column():
single_output_image = gr.Image(label="Generated Image")
# Add examples for Single Condition Generation
gr.Examples(
examples=single_examples,
inputs=[prompt, spatial_img, height, width, seed, control_type],
outputs=single_output_image,
fn=single_condition_generate_image,
cache_examples=False, # 缓存示例结果以加快加载速度
label="Single Condition Examples"
)
# Link the buttons to the functions
single_generate_btn.click(
single_condition_generate_image,
inputs=[prompt, spatial_img, height, width, seed, control_type],
outputs=single_output_image
)
# Launch the Gradio app
demo.queue().launch()