haoheliu commited on
Commit
c55c219
1 Parent(s): 83dc4c8

add accordion

Browse files
Files changed (1) hide show
  1. app.py +28 -5
app.py CHANGED
@@ -1,9 +1,30 @@
1
  import gradio as gr
2
  import numpy as np
3
  from audioldm import text_to_audio, build_model
 
 
 
 
 
4
 
5
  audioldm = build_model()
 
 
 
 
 
 
 
 
6
 
 
 
 
 
 
 
 
 
7
  def text2audio(text, duration, guidance_scale, random_seed, n_candidates):
8
  # print(text, length, guidance_scale)
9
  waveform = text_to_audio(audioldm, text, random_seed, duration=duration, guidance_scale=guidance_scale, n_candidate_gen_per_text=int(n_candidates)) # [bs, 1, samples]
@@ -44,15 +65,17 @@ with iface:
44
  </p>
45
  </div>
46
  """
47
- )
48
  with gr.Group():
49
  with gr.Box():
50
  ############# Input
51
  textbox = gr.Textbox(value="A hammer is hitting a wooden surface", max_lines=1)
52
- seed = gr.Number(value=42, label="Change this value (any integer number) will lead to a different generation result.")
53
- duration = gr.Slider(2.5, 10, value=5, step=2.5, label="Duration (seconds)")
54
- guidance_scale = gr.Slider(0, 5, value=2.5, step=0.5, label="Guidance scale (Large => better quality and relavancy to text; Small => better diversity)")
55
- n_candidates = gr.Slider(1, 5, value=1, step=1, label="Automatic quality control. This number control the number of candidates (e.g., generate three audios and choose the best to show you). A Larger value usually lead to better quality with heavier computation")
 
 
56
  ############# Output
57
  outputs=[gr.Audio(label="Output", type="numpy"), gr.Audio(label="Output", type="numpy")]
58
 
 
1
  import gradio as gr
2
  import numpy as np
3
  from audioldm import text_to_audio, build_model
4
+ # from transformers import AutoModelForCausalLM, AutoTokenizer
5
+ # import torch
6
+
7
+ # tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
8
+ # model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
9
 
10
  audioldm = build_model()
11
+ # audioldm=None
12
+
13
+ # def predict(input, history=[]):
14
+ # # tokenize the new input sentence
15
+ # new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
16
+
17
+ # # append the new user input tokens to the chat history
18
+ # bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
19
 
20
+ # # generate a response
21
+ # history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist()
22
+
23
+ # # convert the tokens to text, and then split the responses into lines
24
+ # response = tokenizer.decode(history[0]).split("<|endoftext|>")
25
+ # response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list
26
+ # return response, history
27
+
28
  def text2audio(text, duration, guidance_scale, random_seed, n_candidates):
29
  # print(text, length, guidance_scale)
30
  waveform = text_to_audio(audioldm, text, random_seed, duration=duration, guidance_scale=guidance_scale, n_candidate_gen_per_text=int(n_candidates)) # [bs, 1, samples]
 
65
  </p>
66
  </div>
67
  """
68
+ )
69
  with gr.Group():
70
  with gr.Box():
71
  ############# Input
72
  textbox = gr.Textbox(value="A hammer is hitting a wooden surface", max_lines=1)
73
+
74
+ with gr.Accordion("Click to change detailed configurations", open=False):
75
+ seed = gr.Number(value=42, label="Change this value (any integer number) will lead to a different generation result.")
76
+ duration = gr.Slider(2.5, 10, value=5, step=2.5, label="Duration (seconds)")
77
+ guidance_scale = gr.Slider(0, 5, value=2.5, step=0.5, label="Guidance scale (Large => better quality and relavancy to text; Small => better diversity)")
78
+ n_candidates = gr.Slider(1, 5, value=3, step=1, label="Automatic quality control. This number control the number of candidates (e.g., generate three audios and choose the best to show you). A Larger value usually lead to better quality with heavier computation")
79
  ############# Output
80
  outputs=[gr.Audio(label="Output", type="numpy"), gr.Audio(label="Output", type="numpy")]
81