hanbin commited on
Commit
fcb444c
·
1 Parent(s): 6dc278b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +119 -126
app.py CHANGED
@@ -1,147 +1,140 @@
1
- # This file is .....
2
- # Author: Hanbin Wang
3
- # Date: 2023/4/18
4
- import transformers
5
  import streamlit as st
6
- from PIL import Image
7
-
8
- from transformers import RobertaTokenizer, T5ForConditionalGeneration
9
- from transformers import pipeline
10
-
11
- @st.cache_resource
12
- def get_model(model_path):
13
- tokenizer = RobertaTokenizer.from_pretrained(model_path)
14
- model = T5ForConditionalGeneration.from_pretrained(model_path)
15
- model.eval()
16
- return tokenizer, model
17
-
18
-
19
- def main():
20
- # `st.set_page_config` is used to display the default layout width, the title of the app, and the emoticon in the browser tab.
21
-
22
- st.set_page_config(
23
- layout="centered", page_title="MaMaL-Gen Demo(代码生成)", page_icon="❄️"
24
- )
25
-
26
- c1, c2 = st.columns([0.32, 2])
27
-
28
- # The snowflake logo will be displayed in the first column, on the left.
29
-
30
- with c1:
31
- st.image(
32
- "./panda23.png",
33
- width=100,
34
- )
35
-
36
- # The heading will be on the right.
37
-
38
- with c2:
39
- st.caption("")
40
- st.title("MaMaL-Gen(代码生成)")
41
 
 
42
 
43
- ############ SIDEBAR CONTENT ############
 
 
 
 
 
44
 
45
- st.sidebar.image("./panda23.png",width=270)
 
 
 
 
 
 
 
 
46
 
47
- st.sidebar.markdown("---")
48
 
49
- st.sidebar.write(
50
  """
51
- ## 使用方法:
52
- 在【输入】文本框输入自然语言,点击【生成】按钮,即会生成想要的代码。
53
  """
54
- )
 
55
 
56
- st.sidebar.write(
57
- """
58
- ## 注意事项:
59
- 1)APP托管在外网上,请确保您可以全局科学上网。
60
-
61
- 2)您可以下载[MaMaL-Gen](https://huggingface.co/hanbin/MaMaL-Gen)模型,本地测试。(无需科学上网)
62
- """
63
  )
64
- # For elements to be displayed in the sidebar, we need to add the sidebar element in the widget.
65
 
66
- # We create a text input field for users to enter their API key.
67
 
68
- # API_KEY = st.sidebar.text_input(
69
- # "Enter your HuggingFace API key",
70
- # help="Once you created you HuggingFace account, you can get your free API token in your settings page: https://huggingface.co/settings/tokens",
71
- # type="password",
72
- # )
73
  #
74
- # # Adding the HuggingFace API inference URL.
75
- # API_URL = "https://api-inference.huggingface.co/models/valhalla/distilbart-mnli-12-3"
 
 
 
 
76
  #
77
- # # Now, let's create a Python dictionary to store the API headers.
78
- # headers = {"Authorization": f"Bearer {API_KEY}"}
79
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80
 
81
- st.sidebar.markdown("---")
82
-
83
- st.write(
84
- "> **Tip:** 首次运行需要加载模型,可能需要一定的时间!"
85
- )
86
-
87
- st.write(
88
- "> **Tip:** 左侧栏给出了一些good case 和 bad case,you can try it!"
89
- )
90
- st.write(
91
- "> **Tip:** 只支持英文输入,输入过长,效果会变差。只支持Python语言"
92
- )
93
-
94
- st.sidebar.write(
95
- "> **Good case:**"
96
- )
97
- code_good = """1)Convert a SVG string to a QImage
98
- 2)Try to seek to given offset"""
99
- st.sidebar.code(code_good, language='python')
100
-
101
- st.sidebar.write(
102
- "> **Bad cases:**"
103
- )
104
- code_bad = """Read an OpenAPI binary file ."""
105
- st.sidebar.code(code_bad, language='python')
106
-
107
- # Let's add some info about the app to the sidebar.
108
-
109
- st.sidebar.write(
110
- """
111
- App使用 [Streamlit](https://streamlit.io/)🎈 和 [HuggingFace](https://huggingface.co/inference-api)'s [MaMaL-Gen](https://huggingface.co/hanbin/MaMaL-Gen) 模型.
112
- """
113
- )
114
-
115
- # model, tokenizer = load_model("hanbin/MaMaL-Gen")
116
- st.write("### 输入:")
117
- input = st.text_area("", height=100)
118
- button = st.button('生成')
119
-
120
- tokenizer,model = get_model("hanbin/MaMaL-Gen")
121
-
122
- input_ids = tokenizer(input, return_tensors="pt").input_ids
123
- generated_ids = model.generate(input_ids, max_length=100)
124
- output = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
125
- # generator = pipeline('text-generation', model="E:\DenseRetrievalGroup\CodeT5-base")
126
- # output = generator(input)
127
- # code = '''def hello():
128
- # print("Hello, Streamlit!")'''
129
- if button:
130
- st.write("### 输出:")
131
- st.code(output, language='python')
132
  else:
133
- st.write('#### 输出位置~~')
134
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
135
 
136
 
137
 
138
 
139
  if __name__ == '__main__':
140
-
141
- main()
142
-
143
-
144
-
145
-
146
-
147
-
 
 
 
 
 
1
  import streamlit as st
2
+ import os
3
+ import openai
4
+ import backoff
5
+ # lucaslane5h8a@hotmail.com----hK4H0M64ihK4H0M64i----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
6
+ # os.environ["http_proxy"]="127.0.0.1:7890"
7
+ # os.environ["https_proxy"]="127.0.0.1:7890"
8
+ openai.api_key="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"
9
+
10
+ st.set_page_config(
11
+ page_title="首页",
12
+ page_icon="🚀",
13
+ layout="centered",
14
+ initial_sidebar_state="auto",
15
+ )
16
+
17
+ # set_page_config配置Streamlit应用程序的页面设置。自定义应用程序的标题、图标、布局等方面,以提供更好的用户体验。
18
+ # 注意:set_page_config必须在应用程序的所有其他元素之前调用,否则会引发异常。
19
+ # 参数说明:
20
+ # page_title:可选参数,用于设置应用程序的标题,通常显示在浏览器的标签页上。
21
+ # page_icon:可选参数,用于设置应用程序的图标,通常显示在浏览器标签页和书签栏中。
22
+ # layout:可选参数,用于设置应用程序的布局方式,可以是"centered"(居中)或"wide"(宽屏)。
23
+ # initial_sidebar_state:可选参数,用于设置侧边栏的初始状态。可以是"auto"(自动展开)或"collapsed"(折叠)
24
+
25
+
26
+ def init_sidebar():
27
+ """
28
+ 初始化侧边栏
29
+ :return:
30
+ """
 
 
 
 
 
 
31
 
32
+ st.sidebar.title("关于我们")
33
 
34
+ markdown = """
35
+ 汇报人:高洺策
36
+
37
+ 其他小组成员:周小渲(组长)、王瑞琪、杨畔、宣乐卓、雷友素、单宁、王钦、刘亭秀、吴林泽、武俊呈
38
+ """
39
+ st.sidebar.info(markdown)
40
 
41
+ logo = "./image/laomo.png"
42
+ st.sidebar.image(logo)
43
+ st.sidebar.title("劳模风范")
44
+ st.sidebar.image("./image/laomo1.png", use_column_width=True)
45
+ st.sidebar.image("./image/laomo2.png", use_column_width=True)
46
+ st.sidebar.image("./image/laomo3.png", use_column_width=True)
47
+ st.sidebar.image("./image/gongjiang1.png", use_column_width=True)
48
+ st.sidebar.image("./image/gongjiang2.png", use_column_width=True)
49
+ st.sidebar.image("./image/gongjiang3.png", use_column_width=True)
50
 
 
51
 
52
+ def init_content():
53
  """
54
+ 初始化内容
55
+ :return:
56
  """
57
+ # Customize page title
58
+ st.title("劳模智能体(Agent)")
59
 
60
+ st.markdown(
61
+ """
62
+ 劳模Agent,即劳模智能体,该智能体可以讲述相关劳模的事迹以及与人类进行沟通,可以作为劳模学习和教学的辅助工具。
63
+ """
 
 
 
64
  )
65
+ # 插入图片,让图片自适应
66
 
67
+ st.image("./image/title.png",use_column_width=True)
68
 
69
+ # st.header("Instructions")
 
 
 
 
70
  #
71
+ # markdown = """
72
+ # 1. For the [GitHub repository](https://github.com/giswqs/geemap-apps) or [use it as a template](https://github.com/new?template_name=geemap-apps&template_owner=giswqs) for your own project.
73
+ # 2. Customize the sidebar by changing the sidebar text and logo in each Python files.
74
+ # 3. Find your favorite emoji from https://emojipedia.org.
75
+ # 4. Add a new app to the `pages/` directory with an emoji in the file name, e.g., `1_🚀_Chart.py`.
76
+ # """
77
  #
78
+ # st.markdown(markdown)
79
+
80
+ # 我要构建一个交互式的应用程序,让用户可以在应用程序中输入一些内容,然后应用程序会根据用户的输入做出相应的响应。
81
+ # 输入框,让用户输入内容
82
+ st.header("输入--")
83
+ text_area = st.text_area("", "在这里输入你的需求~~~~~~~~比如 你是谁?")
84
+
85
+ # 如果文本内容等于“你是谁?”,则输出“我是劳模智能体,我可以讲述相关劳模的事迹以及与人类进行沟通,可以作为劳模学习和教学的辅助工具。”
86
+ # 写一个标题
87
+
88
+ st.header("输出--")
89
+ # 定义一个输出框,默认输出“在这里输出模型回复~~~~~~~~”
90
+ text = st.empty()
91
+ # 修改输出框为多行文本框
92
+ # output_area = st.text_area("", "在这里输出模型回复~~~~~~~~")
93
+ # text.text("在这里输出模型回复~~~~~~~~")
94
+ if text_area == "你是谁?":
95
+ # st.success("我是劳模智能体,我可以讲述相关劳模的事迹以及与人类进行沟通,可以作为劳模学习和教学的辅助工具。")
96
+ # 在输出框output_area中显示文本内容"我是劳模智能体,我可以讲述相关劳模的事迹以及与人类进行沟通,可以作为劳模学习和教学的辅助工具。你可以随意向我提出问题,我会尽力回答你的问题。"
97
+ st.write("我是劳模智能体,我可以讲述相关劳模的事迹以及与人类进行沟通,可以作为劳模学习和教学的辅助工具。你可以随意向我提出问题,我会尽力回答你的问题。")
98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99
  else:
100
+ @backoff.on_exception(
101
+ backoff.fibo,
102
+ # https://platform.openai.com/docs/guides/error-codes/python-library-error-types
103
+ (
104
+ openai.error.APIError,
105
+ openai.error.Timeout,
106
+ openai.error.RateLimitError,
107
+ openai.error.ServiceUnavailableError,
108
+ openai.error.APIConnectionError,
109
+ KeyError,
110
+ ),
111
+ )
112
+ def call_lm(model,messages,max_tokens,temperature,stop_words):
113
+ response = openai.ChatCompletion.create(
114
+ model=model,
115
+ messages=messages,
116
+ max_tokens=max_tokens,
117
+ temperature=temperature,
118
+ stop=stop_words,
119
+ )
120
+ return response.choices[0].message["content"].strip()
121
+ model = "gpt-3.5-turbo-0613"
122
+ messages=[
123
+ {"role": "system", "content": "你是一个劳模智能体,了解中国的劳模事迹。下面你需要回答用户提出的问题"},
124
+ {"role": "user", "content": text_area},
125
+ ]
126
+ print("messages",messages)
127
+ max_tokens = 256
128
+ temperature = 0.9
129
+ stop_words = []
130
+ response = call_lm(model,messages,max_tokens,temperature,stop_words)
131
+ print("response",response)
132
+ st.write(response)
133
 
134
 
135
 
136
 
137
  if __name__ == '__main__':
138
+ init_sidebar()
139
+ init_content()
140
+ pass