from transformers import AutoTokenizer, AutoModelForCausalLM from huggingface_hub import login import os def track_health_status(input_text: str) -> str: # Secure way to load token hf_token = os.getenv("HF_TOKEN") login(hf_token) model_name = "m42-health/med42-70b" tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token) model = AutoModelForCausalLM.from_pretrained(model_name, token=hf_token) inputs = tokenizer.encode(input_text, return_tensors="pt", truncation=True) outputs = model.generate(inputs, max_length=512) result = tokenizer.decode(outputs[0], skip_special_tokens=True) return result