tess-2-demo / sdlm /trainers /trainer_diffusion.py
hamishivi's picture
commit
17ff0d8 verified
raw
history blame
47.1 kB
import math
import time
import warnings
from typing import Any, Dict, List, NamedTuple, Optional, Tuple, Union
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from torch.utils.data import DataLoader, Dataset
from transformers import Trainer
with warnings.catch_warnings():
warnings.simplefilter(action="ignore", category=FutureWarning)
from transformers.deepspeed import deepspeed_init
from transformers.integrations import TensorBoardCallback
from transformers.trainer_pt_utils import (
IterableDatasetShard,
find_batch_size,
nested_concat,
nested_detach,
nested_numpify,
)
from transformers.trainer_utils import denumpify_detensorize, has_length, speed_metrics
from transformers.utils import (
is_apex_available,
is_datasets_available,
is_sagemaker_mp_enabled,
logging,
)
from sdlm.inference.inference_utils import (
logits_projection,
predict_conditional_generated,
)
from sdlm.models.utils import is_cdcd_check
from sdlm.pipelines.simplex_ddpm import SimplexDDPMClassifierGuidancePipeline
from sdlm.utils import convert_to_simplex, pad_data, scale, self_condition_preds
if is_apex_available():
from apex import amp
if is_datasets_available():
import datasets
GENERATION_RESULTS = "generated"
logger = logging.get_logger(__name__)
class EvalLoopOutput(NamedTuple):
logits: Union[np.ndarray, Tuple[np.ndarray]]
simplex: Union[np.ndarray, Tuple[np.ndarray]]
input_ids: Optional[Union[np.ndarray, Tuple[np.ndarray]]]
metrics: Optional[Dict[str, float]]
results: Optional[Dict[str, List[str]]]
num_samples: Optional[int]
class DiffusionTrainer(Trainer):
def __init__(
self,
noise_scheduler,
inference_noise_schedulers,
diffusion_args,
data_args,
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
self.original_data_collator = self.data_collator
self.noise_scheduler = noise_scheduler
self.diffusion_args = diffusion_args
self.data_args = data_args
self.vocab_size = self.model.config.vocab_size
self.inference_noise_schedulers = inference_noise_schedulers
self.inference_timesteps = diffusion_args.num_inference_diffusion_steps
self.tb_writer = self.get_tb_writer()
self.eos_token_id = self.tokenizer.eos_token_id
self.classifier_free_guidance = (
diffusion_args.guidance_scale > 1.0
and data_args.conditional_generation is not None
)
self.counter = 0
# TODO: control seed.
self.self_cond_generator = np.random.default_rng(42)
def annotated_split(self, split):
return f"{split}_top_p_{self.diffusion_args.top_p}_temperature_{self.diffusion_args.temperature}_seed_{self.args.seed}_guidance_scale_{self.diffusion_args.guidance_scale}"
def save_metrics(self, split, metrics, combined=True):
super().save_metrics(self.annotated_split(split), metrics, combined)
def log_metrics(self, split, metrics):
super().log_metrics(self.annotated_split(split), metrics)
def get_tb_writer(self):
for cb in self.callback_handler.callbacks:
if isinstance(cb, TensorBoardCallback):
return cb
return None
def training_step(
self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]
) -> torch.Tensor:
"""
Perform a training step on a batch of inputs.
Subclass and override to inject custom behavior.
Args:
model (`nn.Module`):
The model to train.
inputs (`Dict[str, Union[torch.Tensor, Any]]`):
The inputs and targets of the model.
The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
argument `labels`. Check your model's documentation for all accepted arguments.
Return:
`torch.Tensor`: The tensor with training loss on this batch.
"""
model.train()
inputs = self._prepare_inputs(inputs)
# Truncate the length if needed.
if self.data_args.truncation_length > 0:
inputs["input_ids"] = inputs["input_ids"][
:, : -self.data_args.truncation_length
]
inputs["span_mask"] = inputs["span_mask"][
:, : -self.data_args.truncation_length
]
# Creates the noisy simplex and timesteps.
simplex = convert_to_simplex(
inputs["input_ids"], self.diffusion_args.simplex_value, self.vocab_size
)
noise = self.diffusion_args.simplex_value * torch.randn(
simplex.shape, device=simplex.device, dtype=simplex.dtype
)
bsz = simplex.shape[0]
# Sample a random timestep for each simplex token representation.
# testing just sampling the same place. This better matches reality.
if True: # np.random.rand(1) > 0.5:
timesteps = torch.randint(
0,
len(self.noise_scheduler),
(bsz, inputs["input_ids"].shape[1])
if False # is_tokenwise_cdcd_check(self.model)
else (bsz,),
device=simplex.device,
dtype=torch.int64,
)
timesteps = timesteps[:, None].expand(-1, inputs["input_ids"].shape[1])
else:
timesteps = torch.randint(
0,
len(self.noise_scheduler),
(bsz, inputs["input_ids"].shape[1])
if True # is_tokenwise_cdcd_check(self.model)
else (bsz,),
device=simplex.device,
dtype=torch.int64,
)
# expand out timesteps to match tokenwise setup
# if True: # not is_tokenwise_cdcd_check(self.model):
# timesteps = timesteps[:, None].expand(-1, inputs["input_ids"].shape[1])
# save original timesteps for warping
original_timesteps = timesteps
# warp timesteps according to cdf
# we re-scale the timesteps to the correct range.
# the -1 is due to the timestep should be in range [0, 5000)
if is_cdcd_check(self.model):
input_ids = inputs["input_ids"]
span_mask = inputs["span_mask"]
token_input = torch.where(
(input_ids * span_mask) > 1, self.tokenizer.pad_token_id, input_ids
)
timesteps = self.model.warp_timesteps(
timesteps,
token_input=token_input,
span_mask=span_mask,
t_max=len(self.noise_scheduler) - 1,
)
# Adds noise to each simplex representation (Forward diffusion process).
noisy_simplex = self.noise_scheduler.add_noise(simplex, noise, timesteps)
# the warper model will scale the timesteps to the correct range.
timesteps = scale(timesteps, len(self.noise_scheduler))
# original_timesteps_scaled = scale(original_timesteps, len(self.noise_scheduler))
# inputs.update(
# {"original_timesteps": scale(original_timesteps, len(self.noise_scheduler))}
# )
inputs.update(
{
"timesteps": timesteps,
"simplex": noisy_simplex,
}
)
# inputs.update({"max_timestep": len(self.noise_scheduler)})
if self.diffusion_args.self_condition is not None:
previous_pred = None
# previous_hidden = None
if self.self_cond_generator.random(1) > 0.5:
next_timestep = inputs.pop("timesteps")
next_simplex = inputs.pop("simplex")
timesteps = torch.clamp(
(next_timestep * len(self.noise_scheduler)) + 1,
max=len(self.noise_scheduler) - 1,
)
if is_cdcd_check(self.model):
input_ids = inputs["input_ids"]
span_mask = inputs["span_mask"]
token_input = torch.where(
(input_ids * span_mask) > 1,
self.tokenizer.pad_token_id,
input_ids,
)
timesteps = self.model.warp_timesteps(
timesteps,
token_input=token_input,
span_mask=span_mask,
t_max=len(self.noise_scheduler) - 1,
)
noisy_simplex = self.noise_scheduler.add_noise(
simplex, noise, timesteps
)
timesteps = scale(timesteps, len(self.noise_scheduler))
inputs.update(
{
"timesteps": timesteps,
"simplex": noisy_simplex,
}
)
# we don't backprop through this.
with torch.no_grad():
outputs = model(**inputs, previous_pred=previous_pred)
logits_projection_fct = lambda x: logits_projection( # noqa: E731
x,
self.diffusion_args.sampling_type,
self.diffusion_args.top_p,
self.diffusion_args.simplex_value,
self.diffusion_args.temperature,
)
previous_pred = self_condition_preds(
self.diffusion_args.self_condition,
outputs.logits,
logits_projection_fct,
).detach()
# following rest of self-conditioning, don't backprop through.
# previous_hidden = outputs.hidden_states.detach()
# pop timestep/simplex and put the old ones back.
inputs.update(
{
"timesteps": next_timestep,
"simplex": next_simplex,
}
)
inputs.update({"previous_pred": previous_pred})
# inputs.update({"previous_hidden": previous_hidden})
else:
inputs.update({"previous_pred": None})
# inputs.update({"previous_hidden": None})
# previous_hidden = None
# NOTE: we do this after computation of self-conditioning to not affect that one.
# inputs.update(
# {"classifier_free_guidance_in_train": self.classifier_free_guidance}
# )
# re-warp based on previous hidden state
if is_cdcd_check(self.model):
# replace masked tokens with <mask> token.
input_ids = inputs["input_ids"]
span_mask = inputs["span_mask"]
token_input = torch.where(
(input_ids * span_mask) > 1, self.tokenizer.pad_token_id, input_ids
)
timesteps = self.model.warp_timesteps(
original_timesteps,
t_max=len(self.noise_scheduler) - 1,
token_input=token_input,
span_mask=span_mask,
)
noisy_simplex = self.noise_scheduler.add_noise(simplex, noise, timesteps)
timesteps = scale(timesteps, len(self.noise_scheduler))
inputs.update(
{
"timesteps": timesteps,
"simplex": noisy_simplex,
}
)
with self.compute_loss_context_manager():
loss = self.compute_loss(model, inputs)
if self.args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
# HACK: transformer update
# if self.do_grad_scaling:
# self.scaler.scale(loss).backward()
elif self.use_apex:
with amp.scale_loss(loss, self.optimizer) as scaled_loss:
scaled_loss.backward()
else:
self.accelerator.backward(loss)
return loss.detach() / self.args.gradient_accumulation_steps
def light_prediction_step(
self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]
) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor], Optional[torch.Tensor]]:
with torch.no_grad():
inputs = self._prepare_inputs(inputs)
# Truncate the length if needed.
if self.data_args.truncation_length > 0:
inputs["input_ids"] = inputs["input_ids"][
:, : -self.data_args.truncation_length
]
inputs["span_mask"] = inputs["span_mask"][
:, : -self.data_args.truncation_length
]
# Creates the noisy simplex and timesteps.
simplex = convert_to_simplex(
inputs["input_ids"], self.diffusion_args.simplex_value, self.vocab_size
)
noise = self.diffusion_args.simplex_value * torch.randn(
simplex.shape, device=simplex.device, dtype=simplex.dtype
)
bsz = simplex.shape[0]
# Sample a random timestep for each simplex token representation.
# we use the train timesteps to be consistent with the training process.
# randomly flip between random batchwise and tokenwise timesteps.
if True:
timesteps = torch.randint(
0,
len(self.noise_scheduler),
(bsz, inputs["input_ids"].shape[1])
if False # is_tokenwise_cdcd_check(self.model)
else (bsz,),
device=simplex.device,
dtype=torch.int64,
)
timesteps = timesteps[:, None].expand(-1, inputs["input_ids"].shape[1])
else:
timesteps = torch.randint(
0,
len(self.noise_scheduler),
(bsz, inputs["input_ids"].shape[1])
if True # is_tokenwise_cdcd_check(self.model)
else (bsz,),
device=simplex.device,
dtype=torch.int64,
)
# original_timesteps = timesteps
# if cdcd, we need to wrap the timesteps in a cdf.
# make sure we scale the timesteps to the correct range!
if is_cdcd_check(self.model):
input_ids = inputs["input_ids"]
span_mask = inputs["span_mask"]
token_input = torch.where(
(input_ids * span_mask) > 1, self.tokenizer.pad_token_id, input_ids
)
timesteps = self.model.warp_timesteps(
timesteps,
t_max=len(self.noise_scheduler) - 1,
token_input=token_input,
span_mask=span_mask,
)
# Adds noise to each simplex representation (Forward diffusion process).
noisy_simplex = self.noise_scheduler.add_noise(simplex, noise, timesteps)
timesteps = scale(timesteps, len(self.noise_scheduler))
# original_timesteps_scaled = scale(
# original_timesteps, len(self.noise_scheduler)
# )
# inputs.update({"original_timesteps": original_timesteps_scaled})
inputs.update(
{
"timesteps": timesteps,
"simplex": noisy_simplex,
}
)
# inputs.update({"max_timestep": len(self.noise_scheduler)})
if self.diffusion_args.self_condition is not None:
previous_pred = None
# last_hidden_state = None
if np.random.rand(1) > 0.5:
outputs = model(**inputs, previous_pred=previous_pred)
logits_projection_fct = lambda x: logits_projection( # noqa: E731
x,
self.diffusion_args.sampling_type,
self.diffusion_args.top_p,
self.diffusion_args.simplex_value,
self.diffusion_args.temperature,
)
previous_pred = self_condition_preds(
self.diffusion_args.self_condition,
outputs.logits,
logits_projection_fct,
)
# last_hidden_state = outputs.hidden_states
inputs.update(
{
"previous_pred": previous_pred,
# "previous_hidden": last_hidden_state,
}
)
# NOTE: we do this after computation of self-conditioning to not affect that one.
# inputs.update(
# {"classifier_free_guidance_in_train": self.classifier_free_guidance}
# )
with self.compute_loss_context_manager():
loss = self.compute_loss(model, inputs)
if self.args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
return (
loss.detach()
) # no division by gradient accumulation steps for eval. we want per-sample avg loss.
# TODO: argument for doing one step.
def prediction_step(
self,
inputs: Dict[str, Union[torch.Tensor, Any]],
model: nn.Module,
pipeline: List[SimplexDDPMClassifierGuidancePipeline],
) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor], Optional[torch.Tensor]]:
inputs = self._prepare_inputs(inputs)
# full inference.
with torch.no_grad():
with self.compute_loss_context_manager():
for i, x in enumerate(
pipeline(
seq_length=self.data_args.max_seq_length
- self.data_args.truncation_length,
batch=inputs,
guidance_scale=self.diffusion_args.guidance_scale,
generator=torch.Generator(device=self.args.device).manual_seed(
self.args.seed
)
if self.diffusion_args.generate_with_seed
else None,
is_generator=False,
use_gumbel_softmax=self.diffusion_args.use_gumbel_softmax,
do_hard_sample=self.diffusion_args.do_hard_sample,
softmax_temperature=self.diffusion_args.softmax_temperature,
num_guidance_steps=self.diffusion_args.num_guidance_steps,
)
):
outputs = x
logits = nested_detach(outputs.logits)
simplex = nested_detach(outputs.simplex)
return (simplex, logits)
def evaluation_loop(
self,
dataloader: DataLoader,
description: str,
prediction_loss_only: Optional[bool] = None,
ignore_keys: Optional[List[str]] = None,
metric_key_prefix: str = "eval",
noise_scheduler=None,
light_eval_dataloader=None,
do_light_eval=False,
) -> EvalLoopOutput:
"""
Prediction/evaluation loop, shared by `Trainer.evaluate()` and `Trainer.predict()`.
Works both with or without labels.
"""
args = self.args
is_conditional_generation = self.data_args.conditional_generation is not None
save_prefixes = is_conditional_generation
prediction_loss_only = (
prediction_loss_only
if prediction_loss_only is not None
else args.prediction_loss_only
)
# if eval is called w/o train handle model prep here
if self.is_deepspeed_enabled and self.model_wrapped is self.model:
_, _ = deepspeed_init(self, num_training_steps=0, inference=True)
model = self._wrap_model(self.model, training=False, dataloader=dataloader)
if len(self.accelerator._models) == 0 and model is self.model:
model = (
self.accelerator.prepare(model)
if self.is_deepspeed_enabled
else self.accelerator.prepare_model(model, evaluation_mode=True)
)
if self.is_fsdp_enabled:
self.model = model
# for the rest of this function `model` is the outside model, whether it was wrapped or not
if model is not self.model:
self.model_wrapped = model
# backward compatibility
if self.is_deepspeed_enabled:
self.deepspeed = self.model_wrapped
# if full fp16 or bf16 eval is wanted and this ``evaluation`` or ``predict`` isn't called
# while ``train`` is running, cast it to the right dtype first and then put on device
if not self.is_in_train:
if args.fp16_full_eval:
model = model.to(dtype=torch.float16, device=args.device)
elif args.bf16_full_eval:
model = model.to(dtype=torch.bfloat16, device=args.device)
batch_size = self.args.eval_batch_size
logger.info(f"***** Running {description} *****")
if has_length(dataloader):
logger.info(f" Num examples = {self.num_examples(dataloader)}")
else:
logger.info(" Num examples: Unknown")
logger.info(f" Batch size = {batch_size}")
model.eval()
pipeline = SimplexDDPMClassifierGuidancePipeline(
model=model,
scheduler=noise_scheduler,
simplex_value=self.diffusion_args.simplex_value,
top_p=self.diffusion_args.top_p,
sampling_type=self.diffusion_args.sampling_type,
is_conditional_generation=is_conditional_generation,
tokenizer=self.tokenizer,
classifier_free_uncond_input=self.diffusion_args.classifier_free_uncond_input,
temperature=self.diffusion_args.temperature,
guidance_softmax_combination=self.diffusion_args.guidance_softmax_combination,
classifier_model_name_or_path=self.diffusion_args.classifier_model_name_or_path,
)
self.callback_handler.eval_dataloader = dataloader
# Do this before wrapping.
eval_dataset = getattr(dataloader, "dataset", None)
# Initialize containers
# logits/simplex/labels on GPU/TPU (accumulated for eval_accumulation_steps)
losses_host = None
logits_host = None
simplex_host = None
inputs_host = None
masks_host = None
prefixes_host = None
# logits/simplex/labels on CPU (final containers)
all_losses = None
all_logits = None
all_simplex = None
all_inputs = None
all_masks = None
all_prefixes = None
observed_num_examples = 0
# light evaluation loop.
if light_eval_dataloader is not None and do_light_eval:
for step, inputs in enumerate(light_eval_dataloader):
# Truncate the length if needed.
if self.data_args.truncation_length > 0:
inputs["input_ids"] = inputs["input_ids"][
:, : -self.data_args.truncation_length
]
inputs["span_mask"] = inputs["span_mask"][
:, : -self.data_args.truncation_length
]
max_seq_length = (
self.data_args.max_seq_length - self.data_args.truncation_length
)
assert self.data_args.eval_context_size < max_seq_length
# predict loss mimicking training.
loss = self.light_prediction_step(model, inputs)
if loss is not None:
losses = self._nested_gather(loss.repeat(batch_size))
losses_host = (
losses
if losses_host is None
else torch.cat((losses_host, losses), dim=0)
)
if (
args.eval_accumulation_steps is not None
and (step + 1) % args.eval_accumulation_steps == 0
):
if losses_host is not None:
losses = nested_numpify(losses_host)
all_losses = (
losses
if all_losses is None
else np.concatenate((all_losses, losses), axis=0)
)
losses_host = None
# Main evaluation loop
for step, inputs in enumerate(dataloader):
has_mask = True if "span_mask" in inputs else False
# Truncate the length if needed.
if self.data_args.truncation_length > 0:
inputs["input_ids"] = inputs["input_ids"][
:, : -self.data_args.truncation_length
]
inputs["span_mask"] = inputs["span_mask"][
:, : -self.data_args.truncation_length
]
max_seq_length = (
self.data_args.max_seq_length - self.data_args.truncation_length
)
assert self.data_args.eval_context_size < max_seq_length
# Update the observed num examples
observed_batch_size = find_batch_size(inputs)
if observed_batch_size is not None:
observed_num_examples += observed_batch_size
# For batch samplers, batch_size is not known by the dataloader in advance.
if batch_size is None:
batch_size = observed_batch_size
# Prediction step
simplex, logits = self.prediction_step(inputs, model, pipeline=pipeline)
inputs_decode = self._prepare_input(inputs["input_ids"])
masks = self._prepare_input(inputs["span_mask"]) if has_mask else None
if save_prefixes:
prefixes = (
pad_data(
[input[~mask] for input, mask in zip(inputs_decode, masks)],
self.tokenizer,
)
if has_mask
else None
)
prefixes = self._prepare_input(prefixes)
else:
prefixes = None
# Update containers on host
if prefixes is not None:
prefixes = self.accelerator.pad_across_processes(
prefixes, dim=1, pad_index=self.eos_token_id
)
prefixes = self._nested_gather(prefixes)
prefixes_host = (
prefixes
if prefixes_host is None
else nested_concat(
prefixes_host, prefixes, padding_index=self.eos_token_id
)
)
if inputs_decode is not None:
inputs_decode = self.accelerator.pad_across_processes(
inputs_decode, dim=1, pad_index=self.eos_token_id
)
inputs_decode = self._nested_gather(inputs_decode)
inputs_host = (
inputs_decode
if inputs_host is None
else nested_concat(
inputs_host, inputs_decode, padding_index=self.eos_token_id
)
)
# Note that this block should be before masks block, since we need masks here.
if simplex is not None:
# In case of having a mask softmax is applied over the simplex non-masked values.
if has_mask:
mask_value = torch.finfo(simplex.dtype).min
mask_value = torch.tensor(
mask_value, dtype=simplex.dtype, device=simplex.device
)
simplex = torch.where(masks[:, :, None], simplex, mask_value)
simplex = F.softmax(simplex, dim=-1)
if self.preprocess_logits_for_metrics is not None:
simplex = self.preprocess_logits_for_metrics(simplex)
simplex = self.accelerator.pad_across_processes(
simplex, dim=1, pad_index=self.eos_token_id
)
simplex = self._nested_gather(simplex)
# TODO: note that this is no more a simplex, but the processed one.
simplex_host = (
simplex
if simplex_host is None
else nested_concat(
simplex_host, simplex, padding_index=self.eos_token_id
)
)
if masks is not None:
masks = self.accelerator.pad_across_processes(masks, dim=1, pad_index=0)
masks = self._nested_gather(masks)
# We pad masks with False tokens.
masks_host = (
masks
if masks_host is None
else nested_concat(masks_host, masks, padding_index=0)
)
if logits is not None:
if self.preprocess_logits_for_metrics is not None:
logits = self.preprocess_logits_for_metrics(logits)
logits = self.accelerator.pad_across_processes(
logits, dim=1, pad_index=self.eos_token_id
)
logits = self._nested_gather(logits)
logits_host = (
logits
if logits_host is None
else nested_concat(
logits_host, logits, padding_index=self.eos_token_id
)
)
self.control = self.callback_handler.on_prediction_step(
args, self.state, self.control
)
# Gather all tensors and put them back on the CPU if we have done enough accumulation steps.
if (
args.eval_accumulation_steps is not None
and (step + 1) % args.eval_accumulation_steps == 0
):
if logits_host is not None:
logits = nested_numpify(logits_host)
all_logits = (
logits
if all_logits is None
else nested_concat(
all_logits, logits, padding_index=self.eos_token_id
)
)
if simplex_host is not None:
simplex = nested_numpify(simplex_host)
all_simplex = (
simplex
if all_simplex is None
else nested_concat(
all_simplex, simplex, padding_index=self.eos_token_id
)
)
if inputs_host is not None:
inputs_decode = nested_numpify(inputs_host)
all_inputs = (
inputs_decode
if all_inputs is None
else nested_concat(
all_inputs, inputs_decode, padding_index=self.eos_token_id
)
)
if masks_host is not None:
masks = nested_numpify(masks_host)
all_masks = (
masks
if all_masks is None
else nested_concat(all_masks, masks, padding_index=0)
)
if prefixes_host is not None:
prefixes = nested_numpify(prefixes_host)
all_prefixes = (
prefixes
if all_prefixes is None
else nested_concat(
all_prefixes, prefixes, padding_index=self.eos_token_id
)
)
# Set back to None to begin a new accumulation
logits_host, simplex_host, inputs_host, masks_host, prefixes_host = (
None,
None,
None,
None,
None,
)
# Gather all remaining tensors and put them back on the CPU
if losses_host is not None:
all_losses = nested_numpify(losses_host)
if logits_host is not None:
all_logits = nested_numpify(logits_host)
if simplex_host is not None:
all_simplex = nested_numpify(simplex_host)
if inputs_host is not None:
all_inputs = nested_numpify(inputs_host)
if masks_host is not None:
all_masks = nested_numpify(masks_host)
if prefixes_host is not None:
all_prefixes = nested_numpify(prefixes_host)
if args.past_index and hasattr(self, "_past"):
# Clean the state at the end of the evaluation loop
delattr(self, "_past")
# Number of samples
if has_length(eval_dataset):
num_samples = len(eval_dataset)
# The instance check is weird and does not actually check for the type, but whether the dataset has the right
# methods. Therefore we need to make sure it also has the attribute.
elif (
isinstance(eval_dataset, IterableDatasetShard)
and getattr(eval_dataset, "num_examples", 0) > 0
):
num_samples = eval_dataset.num_examples
else:
if has_length(dataloader):
num_samples = self.num_examples(dataloader)
else: # both len(dataloader.dataset) and len(dataloader) fail
num_samples = observed_num_examples
if num_samples == 0 and observed_num_examples > 0:
num_samples = observed_num_examples
# Generates the texts.
results = {}
if is_conditional_generation:
# We predict the masked tokens only. Here, we compute the masked tokens.
results.update(
predict_conditional_generated(
all_masks,
all_inputs,
self.tokenizer,
all_simplex,
"pred_texts_from_simplex",
self.data_args.skip_special_tokens,
)
)
results.update(
predict_conditional_generated(
all_masks,
all_inputs,
self.tokenizer,
all_logits,
"pred_texts_from_logits",
self.data_args.skip_special_tokens,
)
)
else:
results.update(
{
"pred_texts_from_simplex": self.tokenizer.batch_decode(
all_simplex,
skip_special_tokens=self.data_args.skip_special_tokens,
)
}
)
results.update(
{
"pred_texts_from_logits": self.tokenizer.batch_decode(
all_logits,
skip_special_tokens=self.data_args.skip_special_tokens,
)
}
)
if is_conditional_generation:
results.update(
{
"gold_texts_masked": [
self.tokenizer.decode(
input[mask],
skip_special_tokens=self.data_args.skip_special_tokens,
)
for mask, input in zip(all_masks, all_inputs)
]
}
)
if save_prefixes:
results.update(
{
"prefixes": [
self.tokenizer.decode(
x, skip_special_tokens=True
) # self.data_args.skip_special_tokens)
for x in all_prefixes
]
}
)
# Metrics.
if self.compute_metrics is not None:
metrics = self.compute_metrics(results)
else:
metrics = {}
# To be JSON-serializable, we need to remove numpy types or zero-d tensors
metrics = denumpify_detensorize(metrics)
if all_losses is not None:
metrics[f"{metric_key_prefix}_loss"] = all_losses.mean().item()
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys()):
if not key.startswith(f"{metric_key_prefix}_"):
metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key)
return EvalLoopOutput(
logits=all_logits,
simplex=all_simplex,
input_ids=all_inputs,
metrics=metrics,
num_samples=num_samples,
results=results,
)
def evaluate(
self,
eval_dataset: Optional[Dataset] = None,
ignore_keys: Optional[List[str]] = None,
metric_key_prefix: str = "eval",
) -> Dict[str, float]:
"""
Run evaluation and returns metrics.
The calling script will be responsible for providing a method to compute metrics, as they are task-dependent
(pass it to the init `compute_metrics` argument).
You can also subclass and override this method to inject custom behavior.
Args:
eval_dataset (`Dataset`, *optional*):
Pass a dataset if you wish to override `self.eval_dataset`. If it is a [`~datasets.Dataset`], columns
not accepted by the `model.forward()` method are automatically removed. It must implement the `__len__`
method.
ignore_keys (`Lst[str]`, *optional*):
A list of keys in the output of your model (if it is a dictionary) that should be ignored when
gathering predictions.
metric_key_prefix (`str`, *optional*, defaults to `"eval"`):
An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named
"eval_bleu" if the prefix is "eval" (default)
Returns:
A dictionary containing the evaluation loss and the potential metrics computed from the predictions. The
dictionary also contains the epoch number which comes from the training state.
"""
# memory metrics - must set up as early as possible
self._memory_tracker.start()
eval_dataloader = self.get_eval_dataloader(eval_dataset)
light_eval_dataloader = self.get_light_eval_dataloader(eval_dataset)
start_time = time.time()
outputs = []
timesteps = self.inference_timesteps
for timestep, noise_scheduler in zip(
timesteps, self.inference_noise_schedulers
):
output = self.evaluation_loop(
eval_dataloader,
description="Evaluation",
# No point gathering the predictions if there are no metrics, otherwise we defer to
# self.args.prediction_loss_only
prediction_loss_only=True if self.compute_metrics is None else None,
ignore_keys=ignore_keys,
metric_key_prefix=metric_key_prefix,
noise_scheduler=noise_scheduler,
light_eval_dataloader=light_eval_dataloader,
do_light_eval=timestep
== timesteps[
0
], # we only need the loss once, since it is the same for all timesteps
)
outputs.append(output)
key_prefix = f"inference_{timestep}_"
metrics = {key_prefix + k: v for k, v in output.metrics.items()}
results = {key_prefix + k: v for k, v in output.results.items()}
# reset output with new metrics / results
output = EvalLoopOutput(
logits=output.logits,
simplex=output.simplex,
input_ids=output.input_ids,
metrics=metrics,
num_samples=output.num_samples,
results=results,
)
total_batch_size = self.args.eval_batch_size * self.args.world_size
output.metrics.update(
speed_metrics(
metric_key_prefix,
start_time,
num_samples=output.num_samples,
num_steps=math.ceil(output.num_samples / total_batch_size),
)
)
self.log(output.metrics)
self.control = self.callback_handler.on_evaluate(
self.args, self.state, self.control, output.metrics
)
self._memory_tracker.stop_and_update_metrics(output.metrics)
# Save the results
self.save_metrics(
GENERATION_RESULTS + "_" + key_prefix + metric_key_prefix,
output.results,
)
logger.info("Results are saved now")
# log outside so we can group generations together
if self.args.log_generated_texts:
length = len(outputs[0].logits)
results = {
f"{k}_inference_{i}": v
for o, i in zip(outputs, timesteps)
for k, v in o.results.items()
}
self.log_results_to_tensorboard(self.state, length, results)
return output.metrics
def log_results_to_tensorboard(self, state, length, results):
# TODO: we need to fix this which happens during the only eval option.
if self.tb_writer.tb_writer is None:
return
for i in range(length):
total_text = ""
for k, v in results.items():
total_text += f"*** {k} ***: {v[i]}" + " \n"
self.tb_writer.tb_writer.add_text(
f"sample_{i}", total_text, state.global_step
)
def get_train_dataloader(self) -> DataLoader:
self.data_collator = self.original_data_collator("train")
return super().get_train_dataloader()
def get_eval_dataloader(self, eval_dataset: Optional[Dataset] = None) -> DataLoader:
self.data_collator = self.original_data_collator("eval")
return super().get_eval_dataloader(eval_dataset)
def get_light_eval_dataloader(
self, eval_dataset: Optional[Dataset] = None
) -> DataLoader:
"""
Returns the evaluation [`~torch.utils.data.DataLoader`].
Used for the light evaluation, which matches masking with training.
Args:
eval_dataset (`torch.utils.data.Dataset`, *optional*):
If provided, will override `self.eval_dataset`. If it is a [`~datasets.Dataset`], columns not accepted
by the `model.forward()` method are automatically removed. It must implement `__len__`.
"""
if eval_dataset is None and self.eval_dataset is None:
raise ValueError("Trainer: evaluation requires an eval_dataset.")
eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset
data_collator = self.original_data_collator("train")
if is_datasets_available() and isinstance(eval_dataset, datasets.Dataset):
eval_dataset = self._remove_unused_columns(
eval_dataset, description="evaluation"
)
else:
data_collator = self._get_collator_with_removed_columns(
data_collator, description="evaluation"
)
dataloader_params = {
"batch_size": self.args.eval_batch_size,
"collate_fn": data_collator,
"num_workers": self.args.dataloader_num_workers,
"pin_memory": self.args.dataloader_pin_memory,
}
if not isinstance(eval_dataset, torch.utils.data.IterableDataset):
dataloader_params["sampler"] = self._get_eval_sampler(eval_dataset)
dataloader_params["drop_last"] = self.args.dataloader_drop_last
return self.accelerator.prepare(DataLoader(eval_dataset, **dataloader_params))
def create_optimizer(self):
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
from transformers.trainer_pt_utils import get_parameter_names
opt_model = self.model_wrapped if is_sagemaker_mp_enabled() else self.model
if self.optimizer is not None:
return self.optimizer
decay_parameters = get_parameter_names(opt_model, ALL_LAYERNORM_LAYERS)
decay_parameters = [name for name in decay_parameters if "bias" not in name]
optimizer_cls, optimizer_kwargs = Trainer.get_optimizer_cls_and_kwargs(
self.args
)
# override to apply higher lr to timestep_embed and cdcd cdf
optimizer_grouped_parameters = [
{
"params": [
p
for n, p in opt_model.named_parameters()
if (
n in decay_parameters
and p.requires_grad
and not ("timestep_embed" in n or "cdf" in n)
)
],
"weight_decay": self.args.weight_decay,
"lr": optimizer_kwargs["lr"],
},
{
"params": [
p
for n, p in opt_model.named_parameters()
if (
n not in decay_parameters
and p.requires_grad
and not ("timestep_embed" in n or "cdf" in n)
)
],
"weight_decay": 0.0,
"lr": optimizer_kwargs["lr"],
},
{
"params": [
p
for n, p in opt_model.named_parameters()
if (("timestep_embed" in n) and p.requires_grad)
],
"weight_decay": 0.0,
"lr": self.args.timestep_embed_lr or self.args.learning_rate,
},
]
# check cdcd
cdf_params = [
p
for n, p in opt_model.named_parameters()
if (("cdf" in n) and p.requires_grad)
]
if cdf_params:
optimizer_grouped_parameters.append(
{
"params": cdf_params,
"weight_decay": 0.0,
"lr": 1e-3,
}
)
optimizer_kwargs.pop("lr")
self.optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs)
return self.optimizer