tess-2-demo / sdlm /models /mixins /modeling_mixin.py
hamishivi's picture
commit
17ff0d8 verified
raw
history blame
14.8 kB
from typing import List, Optional, Tuple, Union
import torch
from torch import autograd
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from torch.nn import functional as F
from transformers.cache_utils import Cache
from transformers.modeling_outputs import (
MaskedLMOutput,
SequenceClassifierOutputWithPast,
)
from sdlm.data.data_utils import pad_sequence
from sdlm.models.cdcd.cdf import LossCDF
from sdlm.utils import mix_values_based_on_self_condition
class DiffusionModelMixin:
def forward(
self,
timesteps: torch.FloatTensor,
input_ids: torch.LongTensor,
simplex: torch.FloatTensor,
span_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
previous_pred: Optional[torch.FloatTensor] = None,
reduce_loss: str = "mean",
attention_mask: Optional[torch.LongTensor] =None,
**kwargs,
):
# simplex -> weighted avg embedding
inputs_probs = F.softmax(simplex, dim=-1)
inputs_embeds = self.vocab_to_hidden_dim_embed(inputs_probs)
if self.config.self_condition is not None:
if previous_pred is None:
previous_pred = torch.zeros_like(simplex, device=simplex.device)
previous_pred_probs = F.softmax(previous_pred, dim=-1)
if not self.config.self_condition_mix_logits_before_weights:
previous_pred = self.vocab_to_hidden_dim_embed(previous_pred_probs)
# In this setting, we mix the probabilities then apply the weight.
if self.config.self_condition_mix_before_weights:
mixed_probs = mix_values_based_on_self_condition(
self.config.self_condition, inputs_probs, previous_pred_probs
)
inputs_embeds = self.vocab_to_hidden_dim_embed(mixed_probs)
# Original word embeddings without noise.
inputs_word_embeds = self.get_input_embeddings()(input_ids)
if not self.config.disable_timestep_embed:
timesteps = torch.where(span_mask, timesteps, torch.zeros_like(timesteps))
timesteps_embed = self.timestep_embed(timesteps.unsqueeze(-1).float())
inputs_embeds = inputs_embeds + timesteps_embed
# For the unmasked tokens, we only compute their original word embeddings.
# Note that this also sets the self-conditioned inputs which we are conditioning on
# to their original word embeddings values.
inputs_embeds = torch.where(
span_mask.unsqueeze(-1), inputs_embeds, inputs_word_embeds
)
outputs = self.model(
input_ids=None, # TODO(rabeeh): we can remove this hack when we moved loss to outside.
attention_mask=attention_mask, # only used for dealing with padding during evals
position_ids=position_ids,
past_key_values=None,
inputs_embeds=inputs_embeds,
use_cache=False,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
)
sequence_output = outputs[0]
prediction_scores = self.lm_head(sequence_output)
masked_lm_loss = None
if input_ids is not None:
prediction_scores_for_loss = prediction_scores
loss_fct = CrossEntropyLoss(reduction=reduce_loss)
labels = (
torch.where(span_mask, input_ids, -100)
if span_mask is not None
else input_ids
)
if self.config.mask_padding_in_loss:
# also mask padding token loss....
labels = torch.where(labels == self.config.pad_token_id, -100, labels)
# important: shift labels to the right by one, mimicking the causal pretraining
labels = labels[:, 1:]
prediction_scores_for_loss = prediction_scores_for_loss[:, :-1]
masked_lm_loss = loss_fct(
prediction_scores_for_loss.reshape(-1, self.config.vocab_size),
labels.reshape(-1),
)
if reduce_loss == "none":
# take the average loss over tokens, not counting the masked tokens.
masked_lm_loss = masked_lm_loss.view(input_ids.shape[0], -1)
masked_lm_loss = masked_lm_loss.sum(dim=-1) / span_mask.sum(dim=-1)
# shift our logits forward by one, so that input->output match
prediction_scores = prediction_scores[:, :-1]
# add back in our start tok.
padding_pred = torch.zeros_like(prediction_scores[:, 0])[:, None]
prediction_scores = torch.cat([padding_pred, prediction_scores], dim=1)
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.last_hidden_state,
attentions=outputs.attentions,
)
class CDCDDiffusionModelMixin(DiffusionModelMixin):
def __init__(self, config):
super().__init__(config)
self.cdf = LossCDF(config.n_bins)
def warp_timesteps(
self,
timesteps: torch.FloatTensor,
token_input=None,
t_min=0,
t_max=1,
**kwargs,
):
# u has to be in normalized range...
if t_max - t_min > 0:
timesteps = (timesteps - t_min) / (t_max - t_min)
else:
# weird case, only really happens with 1 diffusion steps (tmin=0,tmax=0)
# in this case, we just set timesteps to 0
timesteps = timesteps - t_min
t_max = 1 # just to avoid div by 0
# warp timesteps. sep. call so we can pass to scheduler
# detach so we don't backprop through this
return self.cdf(u=timesteps, normalized=True, t_min=t_min, t_max=t_max).detach()
def forward(
self,
timesteps: torch.FloatTensor,
input_ids: torch.LongTensor,
simplex: torch.FloatTensor,
span_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
previous_pred: Optional[torch.FloatTensor] = None,
reduce_loss: str = "mean",
**kwargs,
):
output = super().forward(
timesteps=timesteps,
input_ids=input_ids,
simplex=simplex,
span_mask=span_mask,
position_ids=position_ids,
labels=labels,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
previous_pred=previous_pred,
reduce_loss=reduce_loss,
**kwargs,
)
loss = output.loss
# NOTE: need inference mode check to prevent cdf loss computation
# for prev generation in self-conditioning
if self.training and not torch.is_inference_mode_enabled():
# then we learn the cdf from the losses
# only in train mode, since in eval we just apply the warping.
new_timesteps_clone = timesteps.clone()
new_timesteps_clone.requires_grad = True
with torch.enable_grad():
# grab the predictions for the loss values - note at this point timesteps
# are normalised to [0, 1]
xent_pred = self.cdf(t=new_timesteps_clone, normalized=False, t_max=1)
# importance weights -> reciprocal of grad of CDF.
imp_weights = (
1.0 / autograd.grad(xent_pred.sum(), [new_timesteps_clone])[0]
)[:, 0]
imp_weights = imp_weights.detach() * 1e-5
# just one index of timesteps since all are the same. required for compat with tokenwise
cdf_loss = (
imp_weights
* (
self.cdf(t=timesteps, normalized=False, t_max=1)[:, 0]
- loss.detach()
).pow(2)
).mean()
loss = loss.mean() + cdf_loss # upweight cdf loss as its too small :(
else:
loss = loss.mean()
return MaskedLMOutput(
loss=loss,
logits=output.logits,
hidden_states=output.hidden_states,
attentions=output.attentions,
)
class CausalLMForSeq2SeqMixin:
def forward(
self,
input_ids,
attention_mask=None,
position_ids=None,
past_key_values=None,
inputs_embeds=None,
labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
pad_lengths=None,
context_lengths=None,
):
"""
HACK: added input lengths to forward args for generate(),
otherwise `Trainer`'s `remove_unused_columns` will remove all
keys from kwargs.
"""
return super().forward(
input_ids,
attention_mask,
position_ids,
past_key_values,
inputs_embeds,
labels,
use_cache,
output_attentions,
output_hidden_states,
return_dict,
)
@torch.inference_mode()
def generate(self, *args, **kwargs):
context_tokens = []
# labels not needed for generation
del kwargs["labels"]
input_ids = kwargs.pop("input_ids")
if "pad_lengths" in kwargs:
pad_lengths = kwargs.pop("pad_lengths")
context_lengths = kwargs.pop("context_lengths")
for input_id, pad_length, context_length in zip(
input_ids, pad_lengths, context_lengths
):
# grab non-padding context, without labels
context_tokens.append(
input_id[pad_length : pad_length + context_length]
)
else:
context_tokens = input_ids
input_ids = pad_sequence(
context_tokens,
padding_value=self.config.pad_token_id,
batch_first=True,
padding_side=self.config.padding_side,
)
kwargs["input_ids"] = input_ids.to(self.device)
kwargs["attention_mask"] = ~(kwargs["input_ids"] == self.config.pad_token_id)
# need to set to false due to flash attention
kwargs["use_cache"] = False
kwargs["max_new_tokens"] = kwargs.get("max_length", 512)
kwargs.pop("max_length", None)
outputs = super().generate(*args, **kwargs)
seq_len = input_ids.size(1)
output_ids = outputs[:, seq_len:]
return output_ids.to(self.device)
class PaddingIncludedSequenceClassificationMixin:
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
transformer_outputs = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
# we always use the last hidden state for classification
# this is the only change from the original implementation
sequence_lengths = -1
pooled_logits = logits[
torch.arange(batch_size, device=logits.device), sequence_lengths
]
loss = None
if labels is not None:
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (
labels.dtype == torch.long or labels.dtype == torch.int
):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(
pooled_logits.view(-1, self.num_labels), labels.view(-1)
)
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)